Catalysis Letters

, Volume 149, Issue 2, pp 410–418 | Cite as

Synthesis of Ultrafine Silver Nanoparticles on the Surface of Fe3O4@SiO2@KIT-6-NH2 Nanocomposite and Their Application as a Highly Efficient and Reusable Catalyst for Reduction of Nitrofurazone and Aromatic Nitro Compounds Under Mild Conditions

  • Sara Ansari
  • Alireza KhorshidiEmail author
  • Shahab Shariati


Uniform dispersion of ultrafine spherical silver nanoparticles (NPs) was obtained over the surface of Fe3O4@SiO2@KIT-6 core–shell support via functionalization of the mesoporous KIT-6 shell by aminopropyltriethoxysilane, followed by coordination of Ag+ ions and in situ chemical reduction with sodium borohydride. The obtained hybrid material, Fe3O4@SiO2@KIT-6-Ag nanocomposite, was fully characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and used as an efficient catalyst for selective reduction of nitroaromatic compounds in aqueous solution at ambient temperature and neutral pH [nine examples, apparent rate constants at 25 °C, k (min−1), 0.112–0.628]. As a non-aromatic example, nitrofurazone which is a cytotoxic antibiotic was also reduced selectively at nitro group without reduction of other functionalities. Fe3O4@SiO2@KIT-6-Ag NPs also showed potential ability to act as catalyst for reduction of nitromethane in aqueous solution which can provide a colorimetric method for detection of nitromethane in solution down to 0.9 × 10−4 mol L−1. Fe3O4@SiO2@KIT-6-Ag nanocomposite was also screened for its antibacterial activity, and satisfactory results were obtained in comparison with drug references including Tetracycline, Chloramphenicol and Cefotaxime as positive controls, on gram negative Escherichia coli and Pseudomonas aeroginosa. Ease of recycling of the Fe3O4@SiO2@KIT-6-Ag is another benefit of this nanocatalyst. Under the optimized conditions, the recycled catalyst showed 15% loss of efficiency after five successive runs.

Graphical Abstract


Silver nanoparticles Nitroaromatic compounds Reduction Core–shell Catalyst 



Partial support of this study by research council of university of Guilan is gratefully acknowledged.

Supplementary material

10562_2018_2611_MOESM1_ESM.docx (717 kb)
Supplementary material 1 (DOCX 717 KB)


  1. 1.
    Alshehri A-H, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey J-D (2012) ACS Appl Mater Interfaces 4:7007–7010CrossRefGoogle Scholar
  2. 2.
    Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J-Y (2012) Angew Chem Int Ed 51:2409–2413CrossRefGoogle Scholar
  3. 3.
    Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Bioresour Bioprocess 1:1–10CrossRefGoogle Scholar
  4. 4.
    Zheng K, Setyawati M-I, Lim T-P, Leong D-T, Xie J (2016) ACS Nano 10:7934–7942CrossRefGoogle Scholar
  5. 5.
    Sarina S, Waclawik E-R, Zhu H (2013) Green Chem 15:1814–1833CrossRefGoogle Scholar
  6. 6.
    Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H (2013) Angew Chem Int Ed 52:7446–7450CrossRefGoogle Scholar
  7. 7.
    Xu L-Q, Yap B-M, Wang R, Neoh K-G, Kang E-T, Fu G-D (2014) Ind Eng Chem Res 53:3116–3124CrossRefGoogle Scholar
  8. 8.
    Zhong C-J, Maye M-M (2001) Adv Mater 13:1507–1511CrossRefGoogle Scholar
  9. 9.
    Canamares M-V, Garcia-Ramos J-V, Gomez-Varga J-D, Domingo C, Sanchez-Cortes S (2005) Langmuir 21:8546–8553CrossRefGoogle Scholar
  10. 10.
    Redmond P-L, Hallock A-J, Brus L-E (2005) Nano Lett 5:131–135CrossRefGoogle Scholar
  11. 11.
    Patel A-C, Li S, Wang X-C, Zhang W-J, Wei Y (2007) Chem Mater 19:1231–1238CrossRefGoogle Scholar
  12. 12.
    Shin K-S, Choi J-Y, Park C-S, Jang H-J, Kim K (2009) Catal Lett 133:1CrossRefGoogle Scholar
  13. 13.
    Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) Nanoscale 3:3357–3363CrossRefGoogle Scholar
  14. 14.
    Ji T, Long C, Mu L, Yuan R, Knoblauch M, Bao F-S, Zhu J (2016) Appl Catal B 182:306–315CrossRefGoogle Scholar
  15. 15.
    Horecha M, Kaul E, Horechyy A, Stamm M (2014) J Mater Chem A 2:7431–7438CrossRefGoogle Scholar
  16. 16.
    Naik B, Prasad V-S, Ghosh N-N (2012) Powder Technol 232:1–6CrossRefGoogle Scholar
  17. 17.
    Khdary N-H, Ghanem M-A (2012) J Mater Chem 22:12032–12038CrossRefGoogle Scholar
  18. 18.
    Tang S-C, Vongehr S, Meng X-K (2010) J Phys Chem C 114:977–982CrossRefGoogle Scholar
  19. 19.
    Liu J-J, Wang J, Zhu Z-M, Li L, Guo X-H, Lincoln S-F, Prudhomme R-K (2014) AIChE J 60:1977–1982CrossRefGoogle Scholar
  20. 20.
    Gupta V-K, Mergu N, Kumawat L-K, Singh A-K (2015) Sens Actuators B 207:216–223CrossRefGoogle Scholar
  21. 21.
    Saravanan R, Thirumal E, Gupta V-K, Narayanan V, Stephen A (2013) J Mol Liq 177:394–401CrossRefGoogle Scholar
  22. 22.
    Yola M-L, Gupta V-K, Eren T, Şen A-E, Atar N (2014) Electrochim Acta 120:204–211CrossRefGoogle Scholar
  23. 23.
    Mittal A, Mittal J, Malviya A, Gupta V-K (2010) J Colloid Interface Sci 344:497–507CrossRefGoogle Scholar
  24. 24.
    Gupta V-K, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Mater Sci Eng C 31:1062–1067CrossRefGoogle Scholar
  25. 25.
    Saleh T-A, Gupta V-K (2012) J Colloid Interface Sci 371:101–106CrossRefGoogle Scholar
  26. 26.
    Saravanan R, Khan M-M, Gupta V-K, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) RSC Adv 5:34645–34651CrossRefGoogle Scholar
  27. 27.
    Devaraj M, Saravanan R, Deivasigamani R, Gupta V-K, Gracia F, Jayadevan S (2016) J Mol Liq 221:930–941CrossRefGoogle Scholar
  28. 28.
    Saravanan R, Karthikeyan S, Gupta V-K, Sekaran G, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:91–98CrossRefGoogle Scholar
  29. 29.
    Saravanan R, Gupta V-K, Prakash T, Narayanan V, Stephen A (2013) J Mol Liq 178:88–93CrossRefGoogle Scholar
  30. 30.
    Gupta V-K, Saleh T-A (2013) Environ Sci Pollut Res Int 20:2828–2843CrossRefGoogle Scholar
  31. 31.
    Saleh T-A, Gupta V-K (2011) J Colloid Interface Sci 362:337–344CrossRefGoogle Scholar
  32. 32.
    Ahmaruzzaman M, Gupta V-K (2011) Ind Eng Chem 50:13589–13613CrossRefGoogle Scholar
  33. 33.
    Mohammadi N, Khani H, Gupta V-K, Amereh E, Agarwal S (2011) J Colloid Interface Sci 362:457–462CrossRefGoogle Scholar
  34. 34.
    Saleh T-A, Gupta V-K (2012) Sep Purif Technol 89:245–251CrossRefGoogle Scholar
  35. 35.
    Karthikeyan S, Gupta V-K, Boopathy R, Titus A, Sekaran G (2012) J Mol Liq 173:153–163CrossRefGoogle Scholar
  36. 36.
    Saravanan R, Karthikeyan N, Gupta V-K, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:2235–2244CrossRefGoogle Scholar
  37. 37.
    Saravanan R, Khan M-M, Gupta V-K, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
  38. 38.
    Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V-K (2016) Chem Eng J 284:687–697CrossRefGoogle Scholar
  39. 39.
    Nekouei F, Nekouei S, Tyagi I, Gupta V-K (2015) J Mol Liq 201:124–133CrossRefGoogle Scholar
  40. 40.
    Saravanan R, Gupta V-K, Mosquera E, Gracia F (2014) J Mol Liq 198:409–412CrossRefGoogle Scholar
  41. 41.
    Gupta V-K, Nayak A, Agarwal S, Tyagi I (2014) J Colloid Interface Sci 417:420–430CrossRefGoogle Scholar
  42. 42.
    Saravanan R, Joicy S, Gupta V-K, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:4725–4731CrossRefGoogle Scholar
  43. 43.
    Saleh T-A, Gupta V-K (2014) Adv Colloid Interface Sci 211:93–101CrossRefGoogle Scholar
  44. 44.
    Crini G (2005) Prog Polym Sci 30:38–70CrossRefGoogle Scholar
  45. 45.
    Gupta V-K, Kumar R, Nayak A, Saleh T-A, Barakat M-A (2013) Adv Colloid Interface Sci 193:24–34CrossRefGoogle Scholar
  46. 46.
    Saravanan R, Sacari E, Gracia F, Khan M-M, Mosquera E, Gupta V-K (2016) J Mol Liq 221:1029–1033CrossRefGoogle Scholar
  47. 47.
    Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta V-K (2015) Chem Eng J 268:28–37CrossRefGoogle Scholar
  48. 48.
    Khani H, Rofouei M-K, Arab P, Gupta V-K, Vafaei Z (2010) J Hazard Mater 183:402–409CrossRefGoogle Scholar
  49. 49.
    Gupta V-K, Atar N, Yola M-L, Üstündağ Z, Uzun L (2014) Water Res 48:210–217CrossRefGoogle Scholar
  50. 50.
    Gupta V-K, Mergu N, Kumawat L-K, Singh A-K (2015) Talanta 144:80–89CrossRefGoogle Scholar
  51. 51.
    Rajendran S, Khan M-M, Gracia F, Qin J, Gupta V-K, Arumainathan S (2016) Sci Rep 6:31641CrossRefGoogle Scholar
  52. 52.
    Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta V-K (2015) RSC Adv 5:18438–18450CrossRefGoogle Scholar
  53. 53.
    Lee H-Y, An M (2004) Bull Korean Chem Soc 25:1717–1719CrossRefGoogle Scholar
  54. 54.
    Khorshidi A, Ghorbannezhad B (2017) RSC Adv 7:29938–29943CrossRefGoogle Scholar
  55. 55.
    Zhang W, Sun Y, Zhang L (2016) Ind Eng Chem Res 55:12398–12406CrossRefGoogle Scholar
  56. 56.
    Salama N, Banerjeec B, Roya A-S, Mondala P, Roya S, Bhaumikc A, Islama S-M (2014) Appl Catal A 477:184–194CrossRefGoogle Scholar
  57. 57.
    Zhang H, Duan T, Zhu W, Yao W-T (2015) J Phys Chem C 119:21465–21472CrossRefGoogle Scholar
  58. 58.
    Ji T, Chen L, Schmitz M, Bao F-S, Zhu J (2015) Green Chem 17:2515–2523CrossRefGoogle Scholar
  59. 59.
    Davarpanah J, Kiasat A-R (2013) Catal Commun 41:6–11CrossRefGoogle Scholar
  60. 60.
    Lunhong A, Jing J (2013) Bioresour Technol 132:374–377CrossRefGoogle Scholar
  61. 61.
    Baruah B, Gabriel G-J, Akbashev M-J, Booher M-E (2013) Langmuir 29:4225–4234CrossRefGoogle Scholar
  62. 62.
    Kurtan U, Amira M-D, Yıldızb A, Baykal A (2016) Appl Surf Sci 376:16–25CrossRefGoogle Scholar
  63. 63.
    Sojoudi M, Shariati Sh, Khabazipour M (2016) Anal Bioanal Chem Res 3:287–298Google Scholar
  64. 64.
    Shariati Sh, Khabazipour M, Safa F (2017) J Porous Mater 24:129–139CrossRefGoogle Scholar
  65. 65.
    Paul M-F, Paul H-E, Bender R-C, Kopko F, Harrington C-M, Ells V-R, Buzard J-A (1960) Antibiot Chemother 10:287–302Google Scholar
  66. 66.
    Federal R (2002) Topical nitrofurans; extralabel animal drug use; order of prohibition. Fed Reg 67:5470–5471Google Scholar
  67. 67.
    Olive P-L (1978) Chem Biol Interact 20:323–331CrossRefGoogle Scholar
  68. 68.
    Bhanudas N, Subhenjit H, Vadakkethonippurathu S-P, Narendra N-G (2011) Catal Commun 12:1104–1108CrossRefGoogle Scholar
  69. 69.
    Chiu C-Y, Chung P-J, Lao K-U, Liao C-W, Huang M-H (2012) J Phys Chem C 116:23757–23763CrossRefGoogle Scholar
  70. 70.
    Guo F, Ni Y, Ma Y, Xiang N, Liu C (2014) New J Chem 38:5324–5330CrossRefGoogle Scholar
  71. 71.
    Yang M-Q, Pan X, Zhang N, Xu Y-J (2013) CrystEngComm 15:6819–6828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Chemistry, Rasht BranchIslamic Azad UniversityRashtIran

Personalised recommendations