Synthesis of Ultrafine Silver Nanoparticles on the Surface of Fe3O4@SiO2@KIT-6-NH2 Nanocomposite and Their Application as a Highly Efficient and Reusable Catalyst for Reduction of Nitrofurazone and Aromatic Nitro Compounds Under Mild Conditions
- 19 Downloads
Abstract
Uniform dispersion of ultrafine spherical silver nanoparticles (NPs) was obtained over the surface of Fe3O4@SiO2@KIT-6 core–shell support via functionalization of the mesoporous KIT-6 shell by aminopropyltriethoxysilane, followed by coordination of Ag+ ions and in situ chemical reduction with sodium borohydride. The obtained hybrid material, Fe3O4@SiO2@KIT-6-Ag nanocomposite, was fully characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, and used as an efficient catalyst for selective reduction of nitroaromatic compounds in aqueous solution at ambient temperature and neutral pH [nine examples, apparent rate constants at 25 °C, k (min−1), 0.112–0.628]. As a non-aromatic example, nitrofurazone which is a cytotoxic antibiotic was also reduced selectively at nitro group without reduction of other functionalities. Fe3O4@SiO2@KIT-6-Ag NPs also showed potential ability to act as catalyst for reduction of nitromethane in aqueous solution which can provide a colorimetric method for detection of nitromethane in solution down to 0.9 × 10−4 mol L−1. Fe3O4@SiO2@KIT-6-Ag nanocomposite was also screened for its antibacterial activity, and satisfactory results were obtained in comparison with drug references including Tetracycline, Chloramphenicol and Cefotaxime as positive controls, on gram negative Escherichia coli and Pseudomonas aeroginosa. Ease of recycling of the Fe3O4@SiO2@KIT-6-Ag is another benefit of this nanocatalyst. Under the optimized conditions, the recycled catalyst showed 15% loss of efficiency after five successive runs.
Graphical Abstract
Keywords
Silver nanoparticles Nitroaromatic compounds Reduction Core–shell CatalystNotes
Acknowledgements
Partial support of this study by research council of university of Guilan is gratefully acknowledged.
Supplementary material
References
- 1.Alshehri A-H, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey J-D (2012) ACS Appl Mater Interfaces 4:7007–7010CrossRefGoogle Scholar
- 2.Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J-Y (2012) Angew Chem Int Ed 51:2409–2413CrossRefGoogle Scholar
- 3.Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Bioresour Bioprocess 1:1–10CrossRefGoogle Scholar
- 4.Zheng K, Setyawati M-I, Lim T-P, Leong D-T, Xie J (2016) ACS Nano 10:7934–7942CrossRefGoogle Scholar
- 5.Sarina S, Waclawik E-R, Zhu H (2013) Green Chem 15:1814–1833CrossRefGoogle Scholar
- 6.Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H (2013) Angew Chem Int Ed 52:7446–7450CrossRefGoogle Scholar
- 7.Xu L-Q, Yap B-M, Wang R, Neoh K-G, Kang E-T, Fu G-D (2014) Ind Eng Chem Res 53:3116–3124CrossRefGoogle Scholar
- 8.Zhong C-J, Maye M-M (2001) Adv Mater 13:1507–1511CrossRefGoogle Scholar
- 9.Canamares M-V, Garcia-Ramos J-V, Gomez-Varga J-D, Domingo C, Sanchez-Cortes S (2005) Langmuir 21:8546–8553CrossRefGoogle Scholar
- 10.Redmond P-L, Hallock A-J, Brus L-E (2005) Nano Lett 5:131–135CrossRefGoogle Scholar
- 11.Patel A-C, Li S, Wang X-C, Zhang W-J, Wei Y (2007) Chem Mater 19:1231–1238CrossRefGoogle Scholar
- 12.Shin K-S, Choi J-Y, Park C-S, Jang H-J, Kim K (2009) Catal Lett 133:1CrossRefGoogle Scholar
- 13.Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y (2011) Nanoscale 3:3357–3363CrossRefGoogle Scholar
- 14.Ji T, Long C, Mu L, Yuan R, Knoblauch M, Bao F-S, Zhu J (2016) Appl Catal B 182:306–315CrossRefGoogle Scholar
- 15.Horecha M, Kaul E, Horechyy A, Stamm M (2014) J Mater Chem A 2:7431–7438CrossRefGoogle Scholar
- 16.Naik B, Prasad V-S, Ghosh N-N (2012) Powder Technol 232:1–6CrossRefGoogle Scholar
- 17.Khdary N-H, Ghanem M-A (2012) J Mater Chem 22:12032–12038CrossRefGoogle Scholar
- 18.Tang S-C, Vongehr S, Meng X-K (2010) J Phys Chem C 114:977–982CrossRefGoogle Scholar
- 19.Liu J-J, Wang J, Zhu Z-M, Li L, Guo X-H, Lincoln S-F, Prudhomme R-K (2014) AIChE J 60:1977–1982CrossRefGoogle Scholar
- 20.Gupta V-K, Mergu N, Kumawat L-K, Singh A-K (2015) Sens Actuators B 207:216–223CrossRefGoogle Scholar
- 21.Saravanan R, Thirumal E, Gupta V-K, Narayanan V, Stephen A (2013) J Mol Liq 177:394–401CrossRefGoogle Scholar
- 22.Yola M-L, Gupta V-K, Eren T, Şen A-E, Atar N (2014) Electrochim Acta 120:204–211CrossRefGoogle Scholar
- 23.Mittal A, Mittal J, Malviya A, Gupta V-K (2010) J Colloid Interface Sci 344:497–507CrossRefGoogle Scholar
- 24.Gupta V-K, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Mater Sci Eng C 31:1062–1067CrossRefGoogle Scholar
- 25.Saleh T-A, Gupta V-K (2012) J Colloid Interface Sci 371:101–106CrossRefGoogle Scholar
- 26.Saravanan R, Khan M-M, Gupta V-K, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) RSC Adv 5:34645–34651CrossRefGoogle Scholar
- 27.Devaraj M, Saravanan R, Deivasigamani R, Gupta V-K, Gracia F, Jayadevan S (2016) J Mol Liq 221:930–941CrossRefGoogle Scholar
- 28.Saravanan R, Karthikeyan S, Gupta V-K, Sekaran G, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:91–98CrossRefGoogle Scholar
- 29.Saravanan R, Gupta V-K, Prakash T, Narayanan V, Stephen A (2013) J Mol Liq 178:88–93CrossRefGoogle Scholar
- 30.Gupta V-K, Saleh T-A (2013) Environ Sci Pollut Res Int 20:2828–2843CrossRefGoogle Scholar
- 31.Saleh T-A, Gupta V-K (2011) J Colloid Interface Sci 362:337–344CrossRefGoogle Scholar
- 32.Ahmaruzzaman M, Gupta V-K (2011) Ind Eng Chem 50:13589–13613CrossRefGoogle Scholar
- 33.Mohammadi N, Khani H, Gupta V-K, Amereh E, Agarwal S (2011) J Colloid Interface Sci 362:457–462CrossRefGoogle Scholar
- 34.Saleh T-A, Gupta V-K (2012) Sep Purif Technol 89:245–251CrossRefGoogle Scholar
- 35.Karthikeyan S, Gupta V-K, Boopathy R, Titus A, Sekaran G (2012) J Mol Liq 173:153–163CrossRefGoogle Scholar
- 36.Saravanan R, Karthikeyan N, Gupta V-K, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:2235–2244CrossRefGoogle Scholar
- 37.Saravanan R, Khan M-M, Gupta V-K, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
- 38.Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V-K (2016) Chem Eng J 284:687–697CrossRefGoogle Scholar
- 39.Nekouei F, Nekouei S, Tyagi I, Gupta V-K (2015) J Mol Liq 201:124–133CrossRefGoogle Scholar
- 40.Saravanan R, Gupta V-K, Mosquera E, Gracia F (2014) J Mol Liq 198:409–412CrossRefGoogle Scholar
- 41.Gupta V-K, Nayak A, Agarwal S, Tyagi I (2014) J Colloid Interface Sci 417:420–430CrossRefGoogle Scholar
- 42.Saravanan R, Joicy S, Gupta V-K, Narayanan V, Stephen A (2013) Mater Sci Eng C 33:4725–4731CrossRefGoogle Scholar
- 43.Saleh T-A, Gupta V-K (2014) Adv Colloid Interface Sci 211:93–101CrossRefGoogle Scholar
- 44.Crini G (2005) Prog Polym Sci 30:38–70CrossRefGoogle Scholar
- 45.Gupta V-K, Kumar R, Nayak A, Saleh T-A, Barakat M-A (2013) Adv Colloid Interface Sci 193:24–34CrossRefGoogle Scholar
- 46.Saravanan R, Sacari E, Gracia F, Khan M-M, Mosquera E, Gupta V-K (2016) J Mol Liq 221:1029–1033CrossRefGoogle Scholar
- 47.Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta V-K (2015) Chem Eng J 268:28–37CrossRefGoogle Scholar
- 48.Khani H, Rofouei M-K, Arab P, Gupta V-K, Vafaei Z (2010) J Hazard Mater 183:402–409CrossRefGoogle Scholar
- 49.Gupta V-K, Atar N, Yola M-L, Üstündağ Z, Uzun L (2014) Water Res 48:210–217CrossRefGoogle Scholar
- 50.Gupta V-K, Mergu N, Kumawat L-K, Singh A-K (2015) Talanta 144:80–89CrossRefGoogle Scholar
- 51.Rajendran S, Khan M-M, Gracia F, Qin J, Gupta V-K, Arumainathan S (2016) Sci Rep 6:31641CrossRefGoogle Scholar
- 52.Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta V-K (2015) RSC Adv 5:18438–18450CrossRefGoogle Scholar
- 53.Lee H-Y, An M (2004) Bull Korean Chem Soc 25:1717–1719CrossRefGoogle Scholar
- 54.Khorshidi A, Ghorbannezhad B (2017) RSC Adv 7:29938–29943CrossRefGoogle Scholar
- 55.Zhang W, Sun Y, Zhang L (2016) Ind Eng Chem Res 55:12398–12406CrossRefGoogle Scholar
- 56.Salama N, Banerjeec B, Roya A-S, Mondala P, Roya S, Bhaumikc A, Islama S-M (2014) Appl Catal A 477:184–194CrossRefGoogle Scholar
- 57.Zhang H, Duan T, Zhu W, Yao W-T (2015) J Phys Chem C 119:21465–21472CrossRefGoogle Scholar
- 58.Ji T, Chen L, Schmitz M, Bao F-S, Zhu J (2015) Green Chem 17:2515–2523CrossRefGoogle Scholar
- 59.Davarpanah J, Kiasat A-R (2013) Catal Commun 41:6–11CrossRefGoogle Scholar
- 60.Lunhong A, Jing J (2013) Bioresour Technol 132:374–377CrossRefGoogle Scholar
- 61.Baruah B, Gabriel G-J, Akbashev M-J, Booher M-E (2013) Langmuir 29:4225–4234CrossRefGoogle Scholar
- 62.Kurtan U, Amira M-D, Yıldızb A, Baykal A (2016) Appl Surf Sci 376:16–25CrossRefGoogle Scholar
- 63.Sojoudi M, Shariati Sh, Khabazipour M (2016) Anal Bioanal Chem Res 3:287–298Google Scholar
- 64.Shariati Sh, Khabazipour M, Safa F (2017) J Porous Mater 24:129–139CrossRefGoogle Scholar
- 65.Paul M-F, Paul H-E, Bender R-C, Kopko F, Harrington C-M, Ells V-R, Buzard J-A (1960) Antibiot Chemother 10:287–302Google Scholar
- 66.Federal R (2002) Topical nitrofurans; extralabel animal drug use; order of prohibition. Fed Reg 67:5470–5471Google Scholar
- 67.Olive P-L (1978) Chem Biol Interact 20:323–331CrossRefGoogle Scholar
- 68.Bhanudas N, Subhenjit H, Vadakkethonippurathu S-P, Narendra N-G (2011) Catal Commun 12:1104–1108CrossRefGoogle Scholar
- 69.Chiu C-Y, Chung P-J, Lao K-U, Liao C-W, Huang M-H (2012) J Phys Chem C 116:23757–23763CrossRefGoogle Scholar
- 70.Guo F, Ni Y, Ma Y, Xiang N, Liu C (2014) New J Chem 38:5324–5330CrossRefGoogle Scholar
- 71.Yang M-Q, Pan X, Zhang N, Xu Y-J (2013) CrystEngComm 15:6819–6828CrossRefGoogle Scholar