Catalysis Letters

, Volume 149, Issue 1, pp 328–337 | Cite as

Transformation of dl Limonene into Aromatic Compounds Using Supported Heteropolyacid Catalysts

  • Claudia P. Tavera Ruiz
  • Paola Gauthier-MaradeiEmail author
  • Mickaël Capron
  • Cyril Pirez
  • Olivier Gardoll
  • Benjamin Katryniok
  • Franck Dumeignil


The transformation of dl limonene (mixture of d- and l-form ~ 1:1) that came from the pyrolysis of scrap tires rubber was studied using four heteropolyacid catalysts (H3PW12O40, H3PMo12O40, H4SiW12O40 and H4PMo11VO40) supported on Q-10, SBA-15, MCM-41, and KIT-6. The catalyst activity was measured using a py/GC/FID under a nitrogen atmosphere. The active phase and support were characterized using various technical methods (XRD, Raman, TEM, N2 adsorption–desorption, NH3-TPD, and py-FTIR). The highest weak acidity and largest number of Lewis acid sites promoted the conversion of dl limonene. The isomerization reactions seemed to be more favored than disproportionation reactions. The p-cymene yield was favored, with a high weak acidity and high Lewis/Brønsted acid sites ratio. Moreover, the results show that the use of amorphous support with a higher pore size seems to promote the conversion of dl limonene and the production of p-cymene.

Graphical Abstract

HPA-based catalysts with Si are more favorable for converting dl limonene to p-cymene than those with P. For the HPA-based catalysts with P, the highest acidity favors the highest conversion, especially the Lewis acid sites. In this study, the isomerization reactions seem to be more favored than disproportionation reactions.


Scrap tire rubber valorization Production of p-cymene Heteropolyacid-based catalysts Isomerization reaction Disproportionation reaction 



The authors are grateful to Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander (Project Nos. 1843 and 1858), Unité de Catalyse et Chimie du Solide UCCS, Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Nord – Pas de Calais and FEDER for supporting and funding partially this work. Mrs. Tavera is grateful to Colciencias for the Ph.D. scholarship. A special grateful to Jean Charles Morin of Unité de Catalyse et Chimie du Solide UCCS for the training, technical support and help provided in the performance of analysis.

Compliance with Ethical Standards

Conflict of interest

The authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted or published in any other journal. Also, the authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.


  1. 1.
    PNUD Colombia; Departamento Técnico Administrativo de Medio Ambiente Alcaldía Mayor Santa fé de Bogotá; UNIÓN TEMPORAL; OCADE LTDA; SANIPLAN; AMBIENTAL S.A (2010) Diagnóstico ambiental sobre el manejo actual de llantas y neumáticos usados generados por el parque automotor de Santa Fé de Bogotá. 1–18. Accessed 15 Mar 2017
  2. 2.
    Ministerio de Ambiente Vivienda y Desarollo Territorial (2010) Resolución 1457 del 29 de Julio de 2010: “Por la cual se establecen los sistemas de recolección selectiva y gestión ambiental de llantas usadas y se adoptan otras disposiciones”. Accessed 20 Jan 2017
  3. 3.
    Acosta R, Tavera C, Gauthier-Maradei P, Nabarlatz D (2015) Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics. Int J Chem React Eng 13:189–200Google Scholar
  4. 4.
    Danon B, Van Der Gryp P, Schwarz CE, Görgens JF (2015) A review of dipentene (dl-limonene) production from waste tire pyrolysis. J Anal Appl Pyrolysis 112:1–13CrossRefGoogle Scholar
  5. 5.
    Kyari M, Cunliffe A, Williams PT (2005) Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels 19:1165–1173CrossRefGoogle Scholar
  6. 6.
    Williams PT (2013) Pyrolysis of waste tyres: a review. Waste Manag 33:1714–1728CrossRefGoogle Scholar
  7. 7.
    Kerton FM (2009) Alternative solvents for green chemistry. Royal Society of Chemistry, LondonGoogle Scholar
  8. 8.
    Lycourghiotis S, Makarouni D, Kordouli E et al (2018) Activation of natural mordenite by various acids: characterization and evaluation in the transformation of limonene into p-cymene. Mol Catal 450:95–103CrossRefGoogle Scholar
  9. 9.
    Retajczyk M, Wróblewska A (2017) The isomerization of limonene over the Ti-SBA-15. Catalysts 7:1–14Google Scholar
  10. 10.
    Yilmazoglu E, Akgün M (2017) p-Cymene production from orange peel oil using some metal catalyst in supercritical alcohols. J Supercrit Fluids. Google Scholar
  11. 11.
    Fernandes C, Catrinescu C, Castilho P et al (2007) Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl Catal A Gen 318:108–120CrossRefGoogle Scholar
  12. 12.
    Martín-Luengo MA, Yates M, Martínez Domingo MJ et al (2008) Synthesis of p-cymene from limonene, a renewable feedstock. Appl Catal B Environ 81:218–224CrossRefGoogle Scholar
  13. 13.
    Martin-luengo MA, Yates M, Rojo ES et al (2010) General sustainable p-cymene and hydrogen from limonene. Appl Catal A Gen 387:141–146CrossRefGoogle Scholar
  14. 14.
    Catrinescu C, Fernandes C, Castilho P, Breen C (2006) Influence of exchange cations on the catalytic conversion of limonene over Serra de Dentro (SD) and SAz-1 clays. Appl Catal A Gen 311:172–184CrossRefGoogle Scholar
  15. 15.
    Du J, Xu H, Shen J et al (2005) Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M = Al, Zn) catalysts. Appl Catal A Gen 296:186–193CrossRefGoogle Scholar
  16. 16.
    Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 171–198Google Scholar
  17. 17.
    Kozhevnikov IV, Holmes S, Siddiqui MRH (2003) Coking and regeneration of H3PW12O40/SiO2 catalysts. J Saudi Chem Soc 40:1–7Google Scholar
  18. 18.
    Misono M (2013) Catalysis of heteropoly compounds (polyoxometalates). In: Misono M (ed) Heterogeneous catalysis of mixed oxides, vol. 176. Elsevier, Amsterdam, pp 97–155CrossRefGoogle Scholar
  19. 19.
    Pizzio LR, Vázquez PG, Cáceres CV et al (2005) C-alkylation reactions catalyzed by silica-supported Keggin heteropolyacids. Appl Catal A Gen 287:1–8CrossRefGoogle Scholar
  20. 20.
    Pinto T, Dufaud V, Lefebvre F (2014) Isomerization of n-hexane on heteropolyacids supported on SBA-15 Monofunctional impregnated catalysts. Appl Catal A Gen 483:103–109CrossRefGoogle Scholar
  21. 21.
    Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) General gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378:11–18CrossRefGoogle Scholar
  22. 22.
    Grinenval E, Garron A, Lefebvre F (2013) Butane isomerization over silica-supported heteropolyacids: study of some parameters. J Catal 2013:1–8CrossRefGoogle Scholar
  23. 23.
    Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258:71–82CrossRefGoogle Scholar
  24. 24.
    Misono M (2005) A view on the future of mixed oxide catalysts. The case of heteropolyacids (polyoxometalates) and perovskites. Catal Today 100:95–100CrossRefGoogle Scholar
  25. 25.
    Heravi M, Sadjadi S (2009) Recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis Iranian chemical society recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. J Iran Chem Soc 6:1–54CrossRefGoogle Scholar
  26. 26.
    Ressler T, Dorn U, Walter A et al (2010) Structure and properties of PVMo11O40 heteropolyoxomolybdate supported on silica SBA-15 as selective oxidation catalyst. J Catal 275:1–10CrossRefGoogle Scholar
  27. 27.
    Pirez C, Caderon J, Dacquin J et al (2012) Tunable KIT-6 mesoporous sulfonic acid catalysts for fatty acid esterification. ACS Catal 2:1607–1614CrossRefGoogle Scholar
  28. 28.
    Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 27:207–216CrossRefGoogle Scholar
  29. 29.
    Tavera-Ruiz C, Gauthier-Maradei P, Capron M et al (2018) An alternative to the cymenes production from scrap tire rubber using heteropolyacid catalysts. Waste Biomass Valoriz. Google Scholar
  30. 30.
    Tamura M, Shimizu K, Satsuma A (2012) Comprehensive IR study on acid/base properties of metal oxides. Appl Catal A Gen 433–434:135–145CrossRefGoogle Scholar
  31. 31.
    Katritzky AR, Ignatchenko ES, Barcock RA, Lobanov VS (1994) Prediction of gas chromatographic retention times and response factors using a general quantitative structure-property relationship treatment. Anal Chem 6:1799–1807CrossRefGoogle Scholar
  32. 32.
    Scanlon JT, Willis DE (1985) Calculation of flame ionization detector relative response factors using the effective carbon number concept. J Chromatogr Sci 23:333–340CrossRefGoogle Scholar
  33. 33.
    Chen Y, Cao Y, Suo Y et al (2015) Mesoporous solid acid catalysts of 12-tungstosilicic acid anchored to SBA-15: Characterization and catalytic properties for esterification of oleic acid with methanol. J Taiwan Inst Chem Eng 51:186–192CrossRefGoogle Scholar
  34. 34.
    Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968CrossRefGoogle Scholar
  35. 35.
    Kumar GS, Vishnuvarthan M, Palanichamy M, Murugesan V (2006) SBA-15 supported HPW: Effective catalytic performance in the alkylation of phenol. J Mol Catal A Chem 260:49–55CrossRefGoogle Scholar
  36. 36.
    Li B, Xu Z, Chu W et al (2017) Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation. Chinese J Catal 38:726–734CrossRefGoogle Scholar
  37. 37.
    Siriworarat K, Deerattrakul V, Dittanet P (2017) Production of methanol from carbon dioxide using palladium–copper–zinc loaded on MCM-41: comparison of catalysts synthesized from flame spray pyrolysis and sol–gel method using silica source from rice husk ash. Jounal Clean Prod 142:1234–1243CrossRefGoogle Scholar
  38. 38.
    Bensacia N, Ioana F, Saad M et al (2014) Kinetic and equilibrium studies of lead(II) adsorption from aqueous media by KIT-6 mesoporous silica functionalized with –COOH. Comptes Rendus Chim 17:869–880CrossRefGoogle Scholar
  39. 39.
    Suresh C, Pérez-cabrera L, León JND, De et al (2017) Highly active CoMo/Al (10) KIT-6 catalysts for HDS of DBT: role of structure and aluminum heteroatom in the support matrix. Catal Today. Google Scholar
  40. 40.
    Rivoira L, Martínez ML, Anunziata O, Beltramone A (2017) Vanadium oxide supported on mesoporous SBA-15 modi fi ed with Al and Ga as a highly active catalyst in the ODS of DBT. Microporous Mesoporous Mater. Google Scholar
  41. 41.
    Taleb A, Bharadwaj SK, Saikia P (2017) Surfactant free synthesis of gold nanoparticles within meso-channels of non-functionalized SBA-15 for its promising catalytic activity. Powder Technol 315:147–156CrossRefGoogle Scholar
  42. 42.
    Katryniok B, Dumeignil F (2013) Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal 3:1819–1834CrossRefGoogle Scholar
  43. 43.
    Thomas A, Dablemont C, Basset JM, Lefebvre F (2005) Comparison of H3PW12O40 and H4SiW12O40 heteropolyacids supported on silica by 1H MAS NMR. Comptes Rendus Chim 8:1969–1974CrossRefGoogle Scholar
  44. 44.
    Legagneux N, Basset J, Goguet A, Hardacre C (2009) Characterization of silica-supported dodecatungstic heteropolyacids as a function of their dehydroxylation temperature. Dalt Trans 2235–2240.
  45. 45.
    Kamitsou M, Panagiotou GD, Triantafyllidis KS et al (2014) Transformation of d-limonene into p-cymene over oxide catalysts: a green chemistry approach. Appl Catal A Gen 474:224–229CrossRefGoogle Scholar
  46. 46.
    Ding K, Zhong Z, Zhang B et al (2016) Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. J Anal Appl Pyrolysis 122:55–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INTERFASE, Escuela de Ingeniería QuímicaUniversidad Industrial de SantanderBucaramangaColombia
  2. 2.UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181LilleFrance

Personalised recommendations