Catalysis Letters

, Volume 149, Issue 1, pp 292–302 | Cite as

A New Lewis Acidic Zr Catalyst for the Synthesis of Furanic Diesel Precursor from Biomass Derived Furfural and 2-Methylfuran

  • Yu-Jia Luo
  • Yi-Han Zhou
  • Yao-Bing HuangEmail author


Herein, we reported the first time to use Lewis type acidic Zr/SBA-15 catalyst for the hydroxyalkylation/alkylation (HAA) reaction of biomass derived furfural and 2-methylfuran (2-MF) to produce diesel precursors. Characterizations such as XRD, XPS, SEM and TEM, were used to provide detailed structure features of mesoporous catalysts of varied Si/Zr ratios. Among the catalysts, Zr/SBA-15(20) (Si/Zr ratio(mol:mol) = 20:1) possessed the highest catalytic activity in the HAA reaction, providing 93.9% yield of the target product at 140 °C under neat condition. Lewis acid was revealed as the dominant active sites for the HAA reaction. Reaction parameters including reaction temperature, catalyst loading and furfural/2-MF ratio were investigated and found to affect the reaction efficiency and product yields. Besides, the optimal Zr/SBA-15(20) catalyst maintained outstanding recyclability in the recycling test, offering almost comparable reaction yields as freshly prepared catalyst. This work not only opens up a new concept by using Lewis catalyst for HAA reaction to synthesize diesel precursors from biomass, but also enriches the catalyst inventory of HAA reaction by providing a pH-neutral, recyclable and stable catalyst.

Graphical Abstract


Zr/SBA-15 Hydroxyalkylation/alkylation Diesel precursor 2-Methylfuran Furfural 



This work was supported by the National Natural Science Foundation of China (NSFC 21502095), Natural Science Foundation of Jiangsu Province (BK20150872), Qing Lan Project of Jiangsu Province and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP PPZY2015C221) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

10562_2018_2599_MOESM1_ESM.docx (446 kb)
Supplementary material 1 (DOCX 446 KB)


  1. 1.
    Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Energy Environ Sci 7:1500CrossRefGoogle Scholar
  2. 2.
    Yang T, Cai B, Chang X, Pan H, Huang YB (2017) ChemistrySelect 2:3775CrossRefGoogle Scholar
  3. 3.
    Madu JQ, Agboola BO (2018) Biotech 8:15Google Scholar
  4. 4.
    Climent MJ, Corma A, Iborra S (2014) Green Chem 16:516CrossRefGoogle Scholar
  5. 5.
    Yang T, Zhou YH, Zhu SZ, Pan H, Huang YB (2017) ChemSusChem 10:4066CrossRefGoogle Scholar
  6. 6.
    Huang YB, Yang Z, Chen MY, Dai JJ, Guo QX, Fu Y (2013) ChemSusChem 6:1348CrossRefGoogle Scholar
  7. 7.
    Shi N, Liu Q, Zhang Q, Wang T, Ma L (2013) Green Chem 15:1967CrossRefGoogle Scholar
  8. 8.
    Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L (2013) Bioresour Technol 134:73CrossRefGoogle Scholar
  9. 9.
    Liao Y, Liu Q, Wang T, Long J, Ma L, Zhang Q (2014) Green Chem 16:3305CrossRefGoogle Scholar
  10. 10.
    Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J, Ma L (2015) ACS Sustain Chem Eng 3:1745CrossRefGoogle Scholar
  11. 11.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446CrossRefGoogle Scholar
  12. 12.
    West RM, Liu ZY, Peter M, Dumesic JA (2008) ChemSusChem 1:417CrossRefGoogle Scholar
  13. 13.
    Xing R, Subrahmanyam AV, Olcay H, Qi W, van Walsum GP, Pendse H, Huber GW (2010) Green Chem 12:1933CrossRefGoogle Scholar
  14. 14.
    Olcay H, Subrahmanyam AV, Xing R, Lajoie J, Dumesic JA, Huber GW (2012) Energy Environ Sci 6:205CrossRefGoogle Scholar
  15. 15.
    Folkertsma E, Benthem SH, Witteman L, Slagmaat CAMR, Lutz M, Klein Gebbink RJM, Moret M-E (2017) Dalton Trans 46:6177CrossRefGoogle Scholar
  16. 16.
    Pulido A, Oliver-Tomas B, Renz M, Boronat M, Corma A (2013) ChemSusChem 6:141CrossRefGoogle Scholar
  17. 17.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  18. 18.
    Corma A, Torre ODL, Renz M (2012) Energy Environ Sci 5:6328CrossRefGoogle Scholar
  19. 19.
    Corma A, Torre ODL, Renz M, Villandier N (2011) Angew Chem 123:2423CrossRefGoogle Scholar
  20. 20.
    Li S, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T (2014) Catal Today 234:91CrossRefGoogle Scholar
  21. 21.
    Wang W, Li N, Li S, Li G, Chen F, Sheng X, Wang A, Wang X, Cong Y, Zhang T (2016) Green Chem 18:1218CrossRefGoogle Scholar
  22. 22.
    Li G, Li N, Wang X, Sheng X, Li S, Wang A, Cong Y, Wang X, Zhang T (2014) Energy Fuels 28:5112CrossRefGoogle Scholar
  23. 23.
    Li S, Ning L, Li G, Li L, Wang A, Cong Y, Wang X, Zhang T (2015) Green Chem 17:3644CrossRefGoogle Scholar
  24. 24.
    Li S, Ning L, Li G, Li L, Wang A, Cong Y, Wang X, Xu G, Zhang T (2015) Appl Catal B 170–171:124Google Scholar
  25. 25.
    Xia Q, Xia Y, Xi J, Liu X, Zhang Y, Guo Y, Wang Y (2017) ChemSusChem 10:747CrossRefGoogle Scholar
  26. 26.
    Gracia MD, Balu AM, Campelo JM, Luque R, Marinas JM, Romero AA (2009) Appl Catal A 371:85CrossRefGoogle Scholar
  27. 27.
    Armelao L, Eisenmenger-Sittner C, Groenewolt M, Cross S, Sada C, Schubert U, Tondello E, Zattin A (2005) J Mater Chem 15:1838CrossRefGoogle Scholar
  28. 28.
    Iglesias J, Gracia MD, Luque R, Romero AA, Melero JA (2012) ChemCatChem 4:379CrossRefGoogle Scholar
  29. 29.
    Iglesias J, Melero JA, Morales G, Moreno J, Segura Y, Paniagua M, Cambra A, Hernández B (2015) Catal 5:1911CrossRefGoogle Scholar
  30. 30.
    Wang Y, Cui Q, Guan Y, Wu P (2018) Green Chem 20:2110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of California–BerkeleyBerkeleyUSA

Personalised recommendations