Catalysis Letters

, Volume 149, Issue 1, pp 34–48 | Cite as

Synergistic Enhancement of Hydrogen Production by ZIF-67 (Co) Derived Mo–Co–S Modified g-C3N4/rGO Photocatalyst

  • Yongke Zhang
  • Zhiliang JinEmail author


A novel and high active g-C3N4/rGO/Mo–Co–S is successfully prepared by a simple hydrothermal reaction and calcination with nitrogen in a tube furnace. Using thioacetamide as the sulfur source, ZIF-67 (Co) as the cobalt source, and sodium molybdate as the molybdenum source, the Mo–Co–S co-catalyst is successfully prepared by high-temperature hydrothermal reaction and one-step sulfidation. The g-C3N4/rGO nanosheets and the new Mo–Co–S co-catalyst provide a large space for dye adsorption and also provide more reactive sites for the reaction. It exhibits synergistic effect between g-C3N4, rGO and Mo–Co–S on very high efficient photocatalytic hydrogen production. Under light irradiation, the EY dye acts as a photosensitizer, which broadens the visible light absorption range and absorption intensity of the semiconductor and forms an effective separation of the photogenerated charge. As an electron donor, TEOA can be oxidized by holes, thereby consuming holes and improving the efficiency of charge separation. The maximum amount of hydrogen evolution reaches about 589 μmol for 5 h over the g-C3N4/rGO/Mo–Co–S photocatalyst under visible light irradiation, which is 23.5 times higher than that of the pure g-C3N4. The high photocurrent response, the faster electron-transfer rate constant (Ket = 1.36 × 109 s−1), the short fluorescence lifetime (0.33 ns) and the small Rs (19.46 Ω) and Ret (59.67 Ω) together accelerated the efficient spatial charges transfer, thereby increasing the photocatalytic activity of H2 production.

Graphical Abstract


rGO g-C3N4 Mo–Co–S Synergistic effect Photocatalytic H2 production 



This work was financially supported by the Chinese National Natural Science Foundation (41663012, 21263001) and the innovation team project (YCX18082), North Minzu University.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Wang W, Xu XM, Zhou W, Shao ZP (2017) Adv Sci 4:1600371CrossRefGoogle Scholar
  2. 2.
    Liu DD, Jin ZL, Bi YP (2017) Catal Sci Technol 7:4478–4488CrossRefGoogle Scholar
  3. 3.
    Yang LQ, Huang JF, Shi L, Cao LY, Zhou W, Chang WK, Meng XG, Liu GG, Jie YN, Ye JH (2017) Nano Energy 36:331–340CrossRefGoogle Scholar
  4. 4.
    Shen LJ, Luo MB, Liu YH, Liang RW, Jing FF, Wu L (2015) Appl Catal B 166–167:445–453CrossRefGoogle Scholar
  5. 5.
    Gasparotto A, Barreca D, Bekermann D, Devi A, Fischer RA, Fornasiero P, Gombac V, Lebedev OI, Maccato C, Montini T, Tendeloo GV, Tondello E (2011) J Am Chem Soc 133:19362CrossRefGoogle Scholar
  6. 6.
    Xie YP, Yu ZB, Liu G, Ma XL, Cheng HM (2014) Energy Environ Sci 7:1895–1901CrossRefGoogle Scholar
  7. 7.
    Niu P, Zhang L, Liu G, Cheng HM (2012) Adv Funct Mater 22:4763–4770CrossRefGoogle Scholar
  8. 8.
    Fan K, Jin ZL, Yang H, Liu DD, Hu HY, Bi YP (2017) Sci Rep 7:7710CrossRefGoogle Scholar
  9. 9.
    Zhang JY, Wang YH, Jin J, Zhang J, Lin Z, Huang F, Yu JG (2013) ACS Appl Mater Interfaces 5:10317–10324CrossRefGoogle Scholar
  10. 10.
    Sun ZJ, Chen HL, Huang Q, Du PW (2015) Catal Sci Technol 5:4964CrossRefGoogle Scholar
  11. 11.
    Chen SS, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma SSK, Zhang FX, Domen K, Li C (2015) Angew Chem 54:8498–8501CrossRefGoogle Scholar
  12. 12.
    Zhou FQ, Fan JC, Xu QJ, Min YL (2017) Appl Catal B 201:77–83CrossRefGoogle Scholar
  13. 13.
    Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY (2011) Small 7:1876–1902CrossRefGoogle Scholar
  14. 14.
    Lin Y, Zhang K, Chen WF, Liu YD, Geng ZG, Zeng J, Pan N, Yan LF, Wang XP, Hou JG (2010) ACS Nano 4:3033–3038CrossRefGoogle Scholar
  15. 15.
    Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Angew Chem Int Ed 49:3014CrossRefGoogle Scholar
  16. 16.
    Ng YH, Iwase A, Kudo A, Amal R (2010) J Phys Chem Lett 1:2607–2612CrossRefGoogle Scholar
  17. 17.
    Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491CrossRefGoogle Scholar
  18. 18.
    Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76–80CrossRefGoogle Scholar
  19. 19.
    Wang XC, Chen XF, Thomas A, Fu XZ, Antonietti M (2009) Adv Mater 21:1609–1612CrossRefGoogle Scholar
  20. 20.
    Cui YJ, Ding ZX, Fu XZ, Wang XC (2012) Angew Chem Int Ed 51:11814–11818CrossRefGoogle Scholar
  21. 21.
    Cometto C, Kuriki R, Chen LJ, Maeda K, Lau TC, Ishitani O, Rober M (2018) J Am Chem Soc 140:7437–7440CrossRefGoogle Scholar
  22. 22.
    Zhang JS, Zhang MW, Sun RQ, Wang XC (2015) Angew Chem Int Ed 51:10145CrossRefGoogle Scholar
  23. 23.
    Qin ZX, Xue F, Chen YB, Shen SH, Guo LJ (2017) Appl Catal B 217:551–559CrossRefGoogle Scholar
  24. 24.
    Chen J, Zhao DM, Diao ZD, Wang M, Guo LJ, Shen SH (2015) ACS Appl Mater Interfaces 7:18843–18848CrossRefGoogle Scholar
  25. 25.
    Jiao L, Zhou YX, Jiang HL (2016) Chem Sci 7:1690–1695CrossRefGoogle Scholar
  26. 26.
    Wang SB, Lin JL, Wang XC (2014) Phys Chem Chem Phys 16:14656–14660CrossRefGoogle Scholar
  27. 27.
    Wang SB, Wang XC (2015) Small 11:3097–3112CrossRefGoogle Scholar
  28. 28.
    Wang SB, Wang XC (2016) Angew Chem Int Ed 55:2308–2320CrossRefGoogle Scholar
  29. 29.
    Wang SB, Yao WS, Lin JL, Ding ZX, Wang XC (2014) Angew Chem Int Ed 53:1034–1038CrossRefGoogle Scholar
  30. 30.
    Guo YN, Tang J, Qian HY, Wang ZL, Yamauchi Y (2017) Chem Mater 29:5566–5573CrossRefGoogle Scholar
  31. 31.
    Shao J, Wan ZM, Liu HM, Zheng HY, Gao T, Shen M, Qu QT, Zheng HH (2014) J Mater Chem A 2:12194CrossRefGoogle Scholar
  32. 32.
    Tang J, Salunkhe RR, Torad NL, Imura M, Furukawa SH, Yamauchi Y (2015) J Am Chem Soc 137:1572–1580CrossRefGoogle Scholar
  33. 33.
    Ge L, Zuo F, Liu JK, Ma Q, Wang C, Sun DZ, Bartels L, Feng PY (2012) J Phys Chem C 116:13708–13714CrossRefGoogle Scholar
  34. 34.
    Wang WJ, An TC, Li GY, Xia DH, Zhao HJ, Yu JC, Wong PK (2017) Appl Catal B 217:570–580CrossRefGoogle Scholar
  35. 35.
    Niu FJ, Dong CL, Zhu CB, Huang YC, Wang M, Maier J, Yu Y, Shen SH (2017) J Catal 352:35–41CrossRefGoogle Scholar
  36. 36.
    Wang SB, Guan BY, Lou XWD (2018) Energy Environ Sci 11:306–310CrossRefGoogle Scholar
  37. 37.
    Wang SB, Ding ZX, Wang XC (2015) Chem Commun 51:1517–1519CrossRefGoogle Scholar
  38. 38.
    Wang SB, Hou YD, Wang XC (2015) ACS Appl Mater Interfaces 7:4327–4335CrossRefGoogle Scholar
  39. 39.
    Zhang P, Wang T, Zeng H (2017) Appl Surf Sci 391:404–414CrossRefGoogle Scholar
  40. 40.
    Ma YN, Li J, Liu EZ, Wan J, Hu XY, Fan J (2017) Appl Catal B 219:467–478CrossRefGoogle Scholar
  41. 41.
    Han C, Wang YD, Lei YP, Wang B, Wu N, Shi Q, Li Q (2015) Nano Res 8:1199–1209CrossRefGoogle Scholar
  42. 42.
    Akple MS, Low JX, Wageh S, Al-Ghamdi AA, Yu JG, Zhang J (2015) Appl Surf Sci 358:196CrossRefGoogle Scholar
  43. 43.
    Zhao H, Sun SN, Jiang PP, Xu ZJ (2017) Chem Eng J 315:296–303CrossRefGoogle Scholar
  44. 44.
    Pronin SV, Tabor MG, Jansen DJ, Shenvi RA (2012) J Am Chem Soc 134:2012–2015CrossRefGoogle Scholar
  45. 45.
    Min SX, Lu GX (2011) J Phys Chem C 115:13938–13945CrossRefGoogle Scholar
  46. 46.
    Wang SB, Guan BY, Lu Y, Lou XWD (2017) J Am Chem Soc 139:17305–17308CrossRefGoogle Scholar
  47. 47.
    >Wang SB, Guan BY, Lou XWD (2018) J Am Chem Soc 140:5037–5040CrossRefGoogle Scholar
  48. 48.
    Zhen WL, Ning XF, Yang BJ, Wu YQ, Li Z, Lu GX (2018) Appl Catal B 221:243CrossRefGoogle Scholar
  49. 49.
    Zhang ZY, Huang JD, Zhang MY, Yuan Q, Dong B (2015) Appl Catal B 163:298–305CrossRefGoogle Scholar
  50. 50.
    Shi XW, Fujitsuka M, Kim S, Majima T (2018) Small 14:170327Google Scholar
  51. 51.
    Wang SB, Wang XC (2015) Appl Catal B 162:494–500CrossRefGoogle Scholar
  52. 52.
    Zheng C, Zhu ZZ, Wang SB, Hou YD (2015) Appl Surf Sci 359:805–811CrossRefGoogle Scholar
  53. 53.
    Fageria P, Sudharshan KY, Nazir R, Basu M, Pande S (2017) Electrochim Acta 258:1273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China

Personalised recommendations