Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 107–118 | Cite as

Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot (Part II): Effect of Oxygen Concentration on the Catalytic Activity

  • Melodj Dosa
  • Marco PiumettiEmail author
  • Samir Bensaid
  • Nunzio Russo
  • Debora Fino
Article
  • 129 Downloads

Abstract

In this work, ceria-based nanocatalysts mixed with copper and manganese were studied. All the catalysts were synthesized via the hydrothermal procedure. Four samples were prepared here denoted through the atomic ratios of the metals in the mixed oxide: Ce0.95Mn0.05, Ce0.95Cu0.05, Ce0.95Mn0.025Cu0.025 and CeO2. The samples were tested for the CO and soot oxidation reactions with different gas-phase oxygen concentrations (10, 1.0, 0.5 and 0.02 vol% O2). As a whole, the most promising catalysts for the CO oxidation reaction are the Ce0.95Cu0.05 and Ce0.95Mn0.025Cu0.025 samples. Indeed, the presence of Cu species in the solid enhances the surface redox mechanism for the CO oxidation. High vol% O2 values lead to competitive CO and O2 adsorption on the catalyst surface thus reducing the catalytic performances for binary and ternary oxides. On the other hand, the CO oxidation reaction over the CeO2 catalyst appears favored with 10 vol% O2. For the soot oxidation reaction, the most active catalyst (in terms of soot conversion %) is the CeO2 sample likely due to the unique feature of presenting well-defined and highly reactive nanocubic structures. Moreover, the presence of 10 vol% O2 in the mixture appears to be the best condition to oxidize the soot particles.

Graphical Abstract

Keywords

Nanostructured ceria CO oxidation Soot oxidation Manganese–ceria Copper–ceria 

References

  1. 1.
    Jost K (2002) Spark ignition engine trends. Automotive EngineeringGoogle Scholar
  2. 2.
    Nagai K, Seko T (2000) Trends of motor fuel quality in Japan. JSAE Rev 21:457–462.  https://doi.org/10.1016/S0389-4304(00)00070-9 CrossRefGoogle Scholar
  3. 3.
    Sakaguchi T (2000) Influence of diffusion of fuel-efficient motor vehicles on gasoline demand for individual user owned passenger cars. Energy Policy 28:895–903.  https://doi.org/10.1016/S0301-4215(00)00071-9 CrossRefGoogle Scholar
  4. 4.
    Batmaz I, Balc M, Salman S, Erdiller B (1997) Experimental analysis of fuel economy and exhaust emissions at petrol engine vehicles. In: First Automotive Technology Congress with International Participation. Adana, Turkey, pp 95–103Google Scholar
  5. 5.
    Korkmaz I (1996) A study on the performance and emission characteristics of gasoline and methanol fuelled spark-ignition engines. Istanbul Technical University, TurkeyGoogle Scholar
  6. 6.
    Bayraktar H (1997) Theoretical investigation of the effect of gasoline-ethanol blends on spark-ignition engine combustion and cycles. Karadeniz Technical University, TurkeyGoogle Scholar
  7. 7.
    Heywood JB (1988) Internal combustion engine fundamentals. Mcgraw-hill, New YorkGoogle Scholar
  8. 8.
    Mogi K (1998) Analysis and avoidance of pre-ignition in S.I. gasoline engines. JSAE Rev 19:9–14.  https://doi.org/10.1016/S0389-4304(97)00045-3 CrossRefGoogle Scholar
  9. 9.
    Lox ESJ, Engler BH, Frennet A, Bastin JM (1999) Environmental catalysis–mobile sources. In: Ertl G, Knozinger H, Weitkamp J (eds) Environmental catalysis, Wiley, Weinheim, pp 1–117Google Scholar
  10. 10.
    Moldovan M, Palacios MA, Gómez MM et al (2002) Environmental risk of particulate and soluble platinum group elements released from gasoline and diesel engine catalytic converters. Sci Total Environ 296:199–208.  https://doi.org/10.1016/S0048-9697(02)00087-6 CrossRefGoogle Scholar
  11. 11.
    Neeft JPA, Van Pruissen OP, Makkee M, Moulijn JA (1997) Catalysts for the oxidation of soot from diesel exhaust gases. II. Contact between soot and catalyst under practical conditions. Appl Catal B Environ 12:21–31.  https://doi.org/10.1016/S0926-3373(96)00060-4 CrossRefGoogle Scholar
  12. 12.
    Govinda Rao B, Jampaiah D, Venkataswamy P, Reddy BM (2016) Enhanced catalytic performance of manganese and cobalt Co-doped CeO2 catalysts for diesel soot oxidation. Chem Sel 1:6681–6691.  https://doi.org/10.1002/slct.201601297 Google Scholar
  13. 13.
    Sudarsanam P, Hillary B, Mallesham B et al (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32:2208–2215.  https://doi.org/10.1021/acs.langmuir.5b04590 CrossRefGoogle Scholar
  14. 14.
    Piumetti M, Bensaid S, Russo N, Fino D (2015) Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl Catal B Environ 165:742–751.  https://doi.org/10.1016/j.apcatb.2014.10.062 CrossRefGoogle Scholar
  15. 15.
    Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A Gen 509:75–96CrossRefGoogle Scholar
  16. 16.
    Andana T, Piumetti M, Bensaid S et al (2016) CO and soot oxidation over Ce–Zr–Pr oxide catalysts. Nanoscale Res Lett 11:278.  https://doi.org/10.1186/s11671-016-1494-6 CrossRefGoogle Scholar
  17. 17.
    Neeft J, Makkee M, Moulijn J (1996) Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Appl Catal B Environ 8:57.  https://doi.org/10.1016/0926-3373(95)00057-7 CrossRefGoogle Scholar
  18. 18.
    Pérez VR, Bueno-López A (2015) Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases. Chem Eng J 279:79–85.  https://doi.org/10.1016/j.cej.2015.05.004 CrossRefGoogle Scholar
  19. 19.
    Piumetti M, Andana T, Bensaid S et al (2017) Ceria-based nanomaterials as catalysts for CO oxidation and soot combustion: effect of Zr-Pr doping and structural properties on the catalytic activity. AIChE J 63:216–225.  https://doi.org/10.1002/aic.15548 CrossRefGoogle Scholar
  20. 20.
    Piumetti M, Bensaid S, Fino D, Russo N (2015) Catalysis in diesel engine NO x aftertreatment: a review. Catal Struct React 1:155–173.  https://doi.org/10.1080/2055074X.2015.1105615 CrossRefGoogle Scholar
  21. 21.
    Andana T, Piumetti M, Bensaid S et al (2017) Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B Environ 209:295–310.  https://doi.org/10.1016/j.apcatb.2017.03.010 CrossRefGoogle Scholar
  22. 22.
    Setiabudi A, Chen J, Mul G et al (2004) CeO2 catalysed soot oxidation: the role of active oxygen to accelerate the oxidation conversion. Appl Catal B Environ 51:9–19.  https://doi.org/10.1016/J.APCATB.2004.01.005 CrossRefGoogle Scholar
  23. 23.
    Arena F, Di Chio R, Fazio B et al (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B Environ 210:14–22.  https://doi.org/10.1016/j.apcatb.2017.03.049 CrossRefGoogle Scholar
  24. 24.
    Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B Environ 146:1–11.  https://doi.org/10.1016/j.apcatb.2013.02.033 CrossRefGoogle Scholar
  25. 25.
    Aneggi E, Wiater D, De Leitenburg C et al (2014) Shape-dependent activity of ceria in soot combustion. ACS Catal 4:172–181.  https://doi.org/10.1021/cs400850r CrossRefGoogle Scholar
  26. 26.
    Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J Catal 234:88–95.  https://doi.org/10.1016/j.jcat.2005.06.008 CrossRefGoogle Scholar
  27. 27.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520.  https://doi.org/10.1080/01614949608006464 CrossRefGoogle Scholar
  28. 28.
    Di Sarli V, Landi G, Lisi L, Di Benedetto A (2017) Ceria-coated diesel particulate filters for continuous regeneration. AIChE J 63:3442–3449.  https://doi.org/10.1002/aic.15688 CrossRefGoogle Scholar
  29. 29.
    Gupta A, Waghmare UV, Hegde MS (2010) Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation. Chem Mater 22:5184–5198.  https://doi.org/10.1021/cm101145d CrossRefGoogle Scholar
  30. 30.
    Doornkamp C, Ponec V (2000) The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A Chem 162:19–32.  https://doi.org/10.1016/S1381-1169(00)00319-8 CrossRefGoogle Scholar
  31. 31.
    Piumetti M, Bensaid S, Andana T et al (2017) Nanostructured ceria-based materials: effect of the hydrothermal synthesis conditions on the structural properties and catalytic activity. Catalysts 7:174.  https://doi.org/10.3390/catal7060174 CrossRefGoogle Scholar
  32. 32.
    Mai HX, Sun LD, Zhang YW et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385.  https://doi.org/10.1021/jp055584b CrossRefGoogle Scholar
  33. 33.
    Yang Z, Zhou K, Liu X et al (2007) Single-crystalline ceria nanocubes: size-controlled synthesis, characterization and redox property. Nanotechnology 18:185606.  https://doi.org/10.1088/0957-4484/18/18/185606 CrossRefGoogle Scholar
  34. 34.
    Dosa M, Piumetti M, Bensaid S et al (2017) Novel Mn–Cu-containing CeO2 nanopolyhedra for the oxidation of CO and diesel soot: effect of dopants on the nanostructure and catalytic activity. Catal Lett 1–14.  https://doi.org/10.1007/s10562-017-2226-y CrossRefGoogle Scholar
  35. 35.
    Venkataswamy P, Jampaiah D, Mukherjee D et al (2016) Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal Lett 146:2105–2118.  https://doi.org/10.1007/s10562-016-1811-9 CrossRefGoogle Scholar
  36. 36.
    Andana T, Piumetti M, Bensaid S et al (2016) Nanostructured ceria-praseodymia catalysts for diesel soot combustion. Appl Catal B Environ 197:125–137.  https://doi.org/10.1016/j.apcatb.2015.12.030 CrossRefGoogle Scholar
  37. 37.
    Piumetti M, Andana T, Bensaid S et al (2016) Study on the CO oxidation over ceria-based nanocatalysts. Nanoscale Res Lett 11:165.  https://doi.org/10.1186/s11671-016-1375-z CrossRefGoogle Scholar
  38. 38.
    Jansson J (2000) Low-temperature CO oxidation over Co3O4/Al2O3. J Catal 194:55–60.  https://doi.org/10.1006/jcat.2000.2924 CrossRefGoogle Scholar
  39. 39.
    Royer S, Duprez D (2011) Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem 3:24–65.  https://doi.org/10.1002/cctc.201000378 CrossRefGoogle Scholar
  40. 40.
    Freund HJ, Meijer G, Scheffler M et al (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chemie—Int Ed 50:10064–10094CrossRefGoogle Scholar
  41. 41.
    Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of CO on Pd(111). J Chem Phys 69:1267.  https://doi.org/10.1063/1.436666 CrossRefGoogle Scholar
  42. 42.
    Akhter S, White JM (1986) The effect of oxygen islanding on Co and H2 oxidation on Pt(111). Surf Sci 171:527–542.  https://doi.org/10.1016/0039-6028(86)91058-7 CrossRefGoogle Scholar
  43. 43.
    Libuda J, Meusel I, Hoffmann J et al (2001) The CO oxidation kinetics on supported Pd model catalysts: a molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study. J Chem Phys 114:4669–4684.  https://doi.org/10.1063/1.1342240 CrossRefGoogle Scholar
  44. 44.
    Conner WC, Falconer JL (2002) Spillover in heterogeneous catalysis spillover in heterogeneous catalysis. Society 95:759–788.  https://doi.org/10.1021/cr00035a014 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Melodj Dosa
    • 1
  • Marco Piumetti
    • 1
    Email author
  • Samir Bensaid
    • 1
  • Nunzio Russo
    • 1
  • Debora Fino
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly

Personalised recommendations