Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 180–189 | Cite as

Solvent-Free and Highly Efficient Hydrogenation of α-Pinene to Synthesize cis-Pinane by Using Ru Species Immobilized on APTS-Functionalized Cubic Phase NaNbO3

  • Yin Hu
  • Wei ChenEmail author
  • Mingwei Ba
  • Weiguo Song
Article
  • 55 Downloads

Abstract

Solvent-free selective hydrogenation of α-pinene to synthesize cis-pinane with high efficiency has always been a challenge in the catalytic research. The key to achieve this goal is the development of the highly efficient and recyclable catalysts. Cubic NaNbO3 crystals were functionalized by (γ-aminopropyl)-triethoxysilane (APTS) and decorated with Ru species by a simple solvothermal approach combined with a sol-gel method. And this compound was applied to the catalytic hydrogenation of α-pinene. The crystal phase, chemical structure and surface components of the catalysts were analyzed by X-ray diffraction, field emission transmission electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectra and thermogravimetric analysis. APTS-functionalization of the catalyst surface contributes to the highly dispersed and uniform Ru species with small particle size, leading to the outstanding conversion of α-pinene and selectivity of cis-pinane over NaNbO3/APTS/Ru catalyst. The performance of this catalyst is better than that of other similar catalysts, and is comparable to that of commercial Ru/C. The possible mechanisms of the formation of catalyst and the hydrogenation reaction were proposed and discussed. The decrease of catalytic performance after seven cycles should be ascribed to the decomposition and leaching of APTS during the hydrogenation process. The work provides an alternative strategy to design a kind of reusable catalyst with highly efficient hydrogenation performance based on the surface functionalization.

Graphical Abstract

Keywords

Solvent-free hydrogenation α-Pinene Ru species Cubic phase NaNbO3 surface functionalization Recyclable catalyst 

Notes

Acknowledgements

The authors gratefully acknowledge financial support for this research from the National Natural Science Foundation of China (21503099, 21703089), the Key Research and Development Program of Jiangxi Province (20161ACE50022) and the Scientific Research Foundation of Jiangxi Academy of Sciences (2018-YZD2-20, 2017-YZD1-02, 2015-YYB-12, 2015-XTPH1-12).

Compliance with Ethical Standards

Conflict of interest

All the authors declare there is not any competing fnancial interest.

Supplementary material

10562_2018_2587_MOESM1_ESM.docx (471 kb)
Supplementary material 1 (DOCX 470 KB)

References

  1. 1.
    Selka A, Levesque NA, Foucher D, Clarisse O, Chemat F, Touaibia M (2017) Org Process Res Dev 21:60CrossRefGoogle Scholar
  2. 2.
    Liu Y, Li L, Xie CX, Yu ST, Liu SW (2016) Chem Eng J 303:31CrossRefGoogle Scholar
  3. 3.
    Semikolenov VA, Ilyna II, Simakova IL (2001) Appl Catal A 211:91CrossRefGoogle Scholar
  4. 4.
    Simakova IL, Solkina Y, Deliy I, Warna J, Murzin DY (2009) Appl Catal A 356:216CrossRefGoogle Scholar
  5. 5.
    Yang YJ, Liu XX, Yin DL, Zhang ZH, Lei DC, Yang J (2015) J Ind Eng Chem 26:333CrossRefGoogle Scholar
  6. 6.
    Casella ML, Santori GF, Moglioni A, Vetere V, Ruggera JF, Iglesias GM, Ferretti OA (2007) Appl Catal A 318:1CrossRefGoogle Scholar
  7. 7.
    Ghosh P, Soga T, Afre RA, Jimbo T (2008) J Alloys Compd 462:289CrossRefGoogle Scholar
  8. 8.
    Milewska A, Osuna AMB, Fonseca IM, da Ponte MN (2005) Green Chem 7:726CrossRefGoogle Scholar
  9. 9.
    Tanielyan S, Biunno N, Bhagat R, Augustine R (2014) Top Catal 57:1564CrossRefGoogle Scholar
  10. 10.
    Noel S, Leger B, Ponchel A, Philippot K, Denicourt-Nowicki A, Roucoux A, Monflier E (2014) Catal Today 235:20CrossRefGoogle Scholar
  11. 11.
    Hou S, Xie C, Zhong H, Yu S (2015) RSC Adv 5:89552CrossRefGoogle Scholar
  12. 12.
    Deliy IV, Simakova IL (2008) Russ Chem Bull 57:2056CrossRefGoogle Scholar
  13. 13.
    Cordero-Lanzac T, Palos R, Arandes JM, Castano P, Rodriguez-Mirasol J, Cordero T, Bilbao J (2017) Appl Catal B 203:389CrossRefGoogle Scholar
  14. 14.
    Li K, Chang Q, Yin J, Zhao C, Huang L, Tao Z, Yun Y, Zhang C, Xiang H, Yang Y, Li Y (2018) J Catal 361:193CrossRefGoogle Scholar
  15. 15.
    Lauterbach G, Pritzkow W (1995) J Prakt Chem 337:416CrossRefGoogle Scholar
  16. 16.
    Ko SH, Chou TC, Yang TJ (1995) Ind Eng Chem Res 34:457CrossRefGoogle Scholar
  17. 17.
    Wang LL, Guo HQ, Chen XP, Huang YY, Ren L, Ding SF (2015) Can J Chem Eng 93:1770CrossRefGoogle Scholar
  18. 18.
    Bazhenov YP, Kas’yanova LZ, Bokin AI, Kutepov BI, Khazipova AN, Travkin EA, Shchadneva NA, Khusnutdinov RI, Dzhemilev UM (2003) Russ J Appl Chem 76:234CrossRefGoogle Scholar
  19. 19.
    Yang X, Liu SW, Xie CX, Yu ST, Liu FS (2011) Chin J Catal 32:643Google Scholar
  20. 20.
    Hou SL, Xie CX, Yu FL, Yuan B, Yu ST (2016) RSC Adv 6:54806CrossRefGoogle Scholar
  21. 21.
    Hou S, Wang X, Huang C, Xie C, Yu S (2016) Catal Lett 146:580CrossRefGoogle Scholar
  22. 22.
    Zaera F (2017) Nature 541:37CrossRefGoogle Scholar
  23. 23.
    Liu Y, Li L, Liu SW, Xie CX, Yu ST (2016) J Mol Catal A 424:269CrossRefGoogle Scholar
  24. 24.
    Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA (2017) Nature 541:68CrossRefGoogle Scholar
  25. 25.
    Zaera F (2017) ACS Catal 7:4947CrossRefGoogle Scholar
  26. 26.
    Collins SSE, Cittadini M, Pecharroman C, Martucci A, Mulvaney P (2015) ACS Nano 9:7846CrossRefGoogle Scholar
  27. 27.
    Chen R, Jiang Y, Xing W, Jin W (2011) Ind Eng Chem Res 50:4405CrossRefGoogle Scholar
  28. 28.
    Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) RSC Adv 5:3417CrossRefGoogle Scholar
  29. 29.
    Jiang H, Sun XX, Du Y, Chen RZ, Xing WH (2014) Chin J Catal 35:1990CrossRefGoogle Scholar
  30. 30.
    Chen R, Jiang Y, Xing W, Jin W (2013) Ind Eng Chem Res 52:5002CrossRefGoogle Scholar
  31. 31.
    Dai H, Li H, Wang F (2006) Appl Surf Sci 253:2474CrossRefGoogle Scholar
  32. 32.
    Xie L, Wang X, Yu F, Yuan B, Xie C, Yu S (2017) RSC Adv 7:51452CrossRefGoogle Scholar
  33. 33.
    Wang J, Wang X, Cui Z, Liu B, Cao M (2015) Phys Chem Chem Phys 17:14185CrossRefGoogle Scholar
  34. 34.
    Chen W, Hu Y, Ba M (2018) Appl Surf Sci 435:483CrossRefGoogle Scholar
  35. 35.
    Gu Q, Zhu K, Sun Q, Liu J, Wang J, Qiu J, Wang J (2016) Phys Chem Chem Phys 18:33171CrossRefGoogle Scholar
  36. 36.
    Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) J Catal 359:17CrossRefGoogle Scholar
  37. 37.
    Roland U, Braunschweig T, Roessner F (1997) J Mol Catal A 127:61CrossRefGoogle Scholar
  38. 38.
    Dai W, Ke P, Wang A (2011) Vacuum 85:792CrossRefGoogle Scholar
  39. 39.
    Ren J, Ouyang S, Xu H, Meng X, Wang T, Wang D, Ye J (2017) Adv Energy Mater 7:1601657CrossRefGoogle Scholar
  40. 40.
    Zheng Z, Teo J, Chen X, Liu H, Yuan Y, Waclawik ER, Zhong Z, Zhu H (2010) Chem Eur J 16:1202CrossRefGoogle Scholar
  41. 41.
    Azevedo AF, Matsushima JT, Vicentin FC, Baldan MR, Ferreira NG (2009) Appl Surf Sci 255:6565CrossRefGoogle Scholar
  42. 42.
    Bunin IZ, Chanturiya VA, Ryazantseva MV, Anashkina NE, Koporulina EV (2016) Bull Russ Acad Sci 80:645CrossRefGoogle Scholar
  43. 43.
    Zhang L, Jin Q, Huang J, Liu Y, Shan L, Wang X (2010) Appl Surf Sci 256:5911CrossRefGoogle Scholar
  44. 44.
    Yang Q-Y, Zhu Y, Tian L, Xie S-H, Pei Y, Li H, Li H-X, Qiao M-H, Fan K-N (2009) Appl Catal A 369:67CrossRefGoogle Scholar
  45. 45.
    Wang L, Gu HS, He J, Zhao TT, Zhang XW, Xiao C, Liu H, Zhang XH, Li YB (2017) J Alloys Compd 695:599CrossRefGoogle Scholar
  46. 46.
    Huan Y, Wang X, Hao W, Li L (2015) RSC Adv 5:72410CrossRefGoogle Scholar
  47. 47.
    Cao S, Li Y, Zhu B, Jaroniec M, Yu J (2017) J Catal 349:208CrossRefGoogle Scholar
  48. 48.
    Duong HP, Le MD, Dao HC, Chen CY (2017) Mater Res Express 4:8CrossRefGoogle Scholar
  49. 49.
    Jamdegni M, Kaur-Ghumaan S, Kaur A (2017) Electrochim Acta 252:578CrossRefGoogle Scholar
  50. 50.
    Liu M, Zhao Z-P, Chen K-C, Liu W-F (2015) Catal Commun 64:70CrossRefGoogle Scholar
  51. 51.
    Mei J, Zhang D, Li N, Zhang M, Gu X, Miao S, Cui S, Yang J (2018) J Alloys Compd 749:715CrossRefGoogle Scholar
  52. 52.
    Li YW, Yang RT (2006) J Am Chem Soc 128:8136CrossRefGoogle Scholar
  53. 53.
    Brown J, Derome A, Hughes G, Monaghan P (1992) Aust J Chem 45:143CrossRefGoogle Scholar
  54. 54.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden PrairieGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute of Applied ChemistryJiangxi Academy of SciencesNanchangPeople’s Republic of China
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations