Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 84–99 | Cite as

A Review of Dendrimer-Encapsulated Metal Nanocatalysts Applied in the Fine Chemical Transformations

  • Ali K. Ilunga
  • Reinout Meijboom
Article
  • 35 Downloads

Abstract

In catalysis, metal nanocatalyst size and stability are crucial parameters directly connected to the catalytic activity. Dendrimers consist of one of the relevant templates capable of encapsulating smaller metal nanocatalysts with the size dimension ranging from 1 to 5 nm. Metal nanocatalysts encapsulated in dendrimer describe a long physical stability estimated to more than 2 months. The innovative physicochemical properties exhibited by metal nanocatalysts tremendously improve the rate constants of redox model reactions. The catalytic pathway by which a catalytic reaction proceeds in the presence of nanocatalysts can be detailed by the means of adsorption isotherm models. The Langmuir–Hinshelwood approach constitutes a reliable the adsorption isotherm model capable of studying the kinetic and thermodynamic parameters on the nanocatalyst surface. The use of dendrimer as a metal nanocatalyst template plays an essential role in both metal stability and shift from homogeneous to heterogeneous nanocatalysts.

Graphical Abstract

Keywords

Dendrimer Isotherm adsorption Kinetic reaction Model reaction Nanoparticles 

References

  1. 1.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  2. 2.
    Cuenya BR (2010) Thin Solid Films 518:3127–3150CrossRefGoogle Scholar
  3. 3.
    Thomas SJM, ChemCatChem 2 (2010) 127–132Google Scholar
  4. 4.
    Burda C, Chen X, Narayanan R (2005) M. a. El-Sayed. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  5. 5.
    Teja AS, Beck MP, Yuan Y, Warrier P (2010) J Appl Phys 107:114319CrossRefGoogle Scholar
  6. 6.
    Solís C, Somacescu S, Palafox E, Balaguer M, Serra JM (2014) J Phys Chem C 118:24266–24273CrossRefGoogle Scholar
  7. 7.
    Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Chem Eur J 15:7822–7829CrossRefGoogle Scholar
  8. 8.
    Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ (2013) Chem Soc Rev 42:7571–7637CrossRefGoogle Scholar
  9. 9.
    Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575–6578CrossRefGoogle Scholar
  10. 10.
    Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Nat Nanotechnol 4:634–641CrossRefGoogle Scholar
  11. 11.
    Li J, Il Seok S, Chu B, Dogan F, Zhang Q, Wang Q (2009) Adv Mater 21:217–221CrossRefGoogle Scholar
  12. 12.
    Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Angew Chemie Int Ed 44:2190–2209CrossRefGoogle Scholar
  13. 13.
    Zhong C-J, Maye MM, Luo J, Han L, Kariuki N, Nanoparticles (2004) 113–143Google Scholar
  14. 14.
    Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) J Pharm Pharmacol 60:977–985CrossRefGoogle Scholar
  15. 15.
    Hansen TW, DeLaRiva AT, Challa SR, Datye AK (2013) Acc Chem Res 46:1720–1730CrossRefGoogle Scholar
  16. 16.
    Bastús NG, Comenge J, Puntes V (2011) Langmuir 27:11098–11105CrossRefGoogle Scholar
  17. 17.
    Ramesh S, J. Nanosci. 2013 (2013) 1–9Google Scholar
  18. 18.
    Lopez-Quintela MA (2003) Curr Opin Colloid Interface Sci 8:137–144CrossRefGoogle Scholar
  19. 19.
    Rajamathi M, Seshadri R (2002) Curr Opin Solid State Mater Sci 6:337–345CrossRefGoogle Scholar
  20. 20.
    Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  21. 21.
    Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355–7356CrossRefGoogle Scholar
  22. 22.
    Barnard AS, Chang LY (2011) ACS Catal 1:76–81CrossRefGoogle Scholar
  23. 23.
    Chang LY, Barnard AS, Gontard LC, Dunin-Borkowski RE (2010) Nano Lett 10:3073–3076CrossRefGoogle Scholar
  24. 24.
    Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J (2014) J Mater Chem A 2:12642–12661CrossRefGoogle Scholar
  25. 25.
    Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Chem Soc Rev 37:885–897CrossRefGoogle Scholar
  26. 26.
    Ilunga AK, Meijboom R (2016) Appl Catal A Gen 509:17–29CrossRefGoogle Scholar
  27. 27.
    Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577–5587CrossRefGoogle Scholar
  28. 28.
    Antonels NC, Meijboom R (2013) Langmuir 29:13433–13442CrossRefGoogle Scholar
  29. 29.
    Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364–365CrossRefGoogle Scholar
  30. 30.
    Nemanashi M, Meijboom R (2013) J Colloid Interface Sci 389:260–267CrossRefGoogle Scholar
  31. 31.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181–190CrossRefGoogle Scholar
  32. 32.
    Gomer R (1990) Rep Prog Phys 53:917–1002CrossRefGoogle Scholar
  33. 33.
    Zhang H, Fu Q, Yao Y, Zhang Z, Ma T, Tan D, Bao X (2008) Langmuir 24:10874–10878CrossRefGoogle Scholar
  34. 34.
    Ali AM, Emanuelsson EAC, Patterson DA (2010) Appl Catal B Environ 97:168–181CrossRefGoogle Scholar
  35. 35.
    Gurlo A, Met Oxide Nanomater Chem Sensors (2013) 3–34Google Scholar
  36. 36.
    Carregal-Romero S, Pérez-Juste J, Hervés P, Liz-Marzán LM, Mulvaney P (2009) Langmuir 26:1271–1277CrossRefGoogle Scholar
  37. 37.
    Kumar KV, Porkodi K, Rocha F (2008) Catal Commun 9:82–84CrossRefGoogle Scholar
  38. 38.
    Ilunga AK, Khoza T, Tjabadi E, Meijboom R, ChemistrySelect 2 (2017) 9803–9809Google Scholar
  39. 39.
    Dasgupta A, Rajukumar LP, Rotella C, Lei Y, Terrones M (2017) Nano Today 12:116–135CrossRefGoogle Scholar
  40. 40.
    Wang X, Ding B, Sun G, Wang M, Yu J (2013) Prog Mater Sci 58:1173–1243CrossRefGoogle Scholar
  41. 41.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117–132CrossRefGoogle Scholar
  42. 42.
    Klajnert B, Bryszewska M (2000) Acta Biochim Pol 48:199–208Google Scholar
  43. 43.
    Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665–1688CrossRefGoogle Scholar
  44. 44.
    Niu Y, Crooks RM (2003) Comptes Rendus Chim 6:1049–1059CrossRefGoogle Scholar
  45. 45.
    Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr (2007) Phys Chem Chem Phys 9:5712–5720CrossRefGoogle Scholar
  46. 46.
    Knecht MR, Weir MG, Myers VS, Pyrz WD, Ye H, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008) Chem Mater 20:5218–5228CrossRefGoogle Scholar
  47. 47.
    Ilunga AK, Meijboom R (2016) J Mol Catal A Chem 411:48–60CrossRefGoogle Scholar
  48. 48.
    Frost T, Margerum LD (2010) Macromolecules 43:1218–1226CrossRefGoogle Scholar
  49. 49.
    Marvin KA, Johnson JA, Rodenbusch SE, Gong L, Vanden Bout DA, Stevenson KJ (2012) Anal Chem 84:5154–5158CrossRefGoogle Scholar
  50. 50.
    Johnson JA, Makis JJ, Marvin KA, Rodenbusch SE, Stevenson KJ (2013) J Phys Chem C 117:22644–22651CrossRefGoogle Scholar
  51. 51.
    Kreiter R, Kleij AW, Gebbink RJMK, van Koten G, Dendritic catalysts. In: Dendrimers Iv. Berlin: Springer; 2001. p. 163–199Google Scholar
  52. 52.
    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814–8820CrossRefGoogle Scholar
  53. 53.
    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237–243CrossRefGoogle Scholar
  54. 54.
    Graetzel M, Frank AJ (1982) J Phys Chem 86:2964–2967CrossRefGoogle Scholar
  55. 55.
    Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008) J Hazard Mater 154:1149–1157CrossRefGoogle Scholar
  56. 56.
    Ilunga AK, Meijboom R (2016) Appl Catal B Environ 189:86–98CrossRefGoogle Scholar
  57. 57.
    Wang Q, Tian S, Ning P (2013) Ind Eng Chem Res 53:643–649CrossRefGoogle Scholar
  58. 58.
    Fan J, Guo Y, Wang J, Fan M (2009) J Hazard Mater 166:904–910CrossRefGoogle Scholar
  59. 59.
    Zhou A, Sadik OA (2008) J Agric Food Chem 56:12081–12091CrossRefGoogle Scholar
  60. 60.
    Wong YC, Szeto YS, Cheung WH, McKay G (2004) J Appl Polym Sci 92:1633–1645CrossRefGoogle Scholar
  61. 61.
    Osunlaja AA, Idris SO, Iyun JF (2012) Arch Appl Sci Res 4:772–780Google Scholar
  62. 62.
    Bwambok DK, Christodouleas DC, Morin SA, Lange H, Phillips ST, Whitesides GM (2014) Anal Chem 86:7478–7485CrossRefGoogle Scholar
  63. 63.
    Polzer F, Wunder S, Lu Y, Ballauff M (2012) J Catal 289:80–87CrossRefGoogle Scholar
  64. 64.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Chem Soc Rev 38:481–494CrossRefGoogle Scholar
  65. 65.
    Nemanashi M, Meijboom R (2016) Catal Commun 83:53–57CrossRefGoogle Scholar
  66. 66.
    Scott RWJ, Wilson OM, Oh S-K, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583–15591CrossRefGoogle Scholar
  67. 67.
    Kim Y-GG, Oh S-KK, Crooks RM (2004) Chem Mater 16:167–172CrossRefGoogle Scholar
  68. 68.
    Daniel MC, Astruc D (2004) Chem Rev 104:293–346CrossRefGoogle Scholar
  69. 69.
    Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340–8347CrossRefGoogle Scholar
  70. 70.
    Noh J-H, Meijboom R (2015) Appl Catal A Gen 497:107–120CrossRefGoogle Scholar
  71. 71.
    Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Appl Geochem 22:249–275CrossRefGoogle Scholar
  72. 72.
    Allen SJ, Mckay G, Porter JF (2004) J Colloid Interface Sci 280:322–333CrossRefGoogle Scholar
  73. 73.
    Foo KY, Hameed BH (2010) Chem Eng J 156:2–10CrossRefGoogle Scholar
  74. 74.
    Vannice MA, Joyce WH, Kinetics of Catalytic Reactions, Springer, 2005Google Scholar
  75. 75.
    Fil BA, Ozmetin C, Korkmaz M (2012) Bull Korean Chem Soc 33:3184–3190CrossRefGoogle Scholar
  76. 76.
    Foo KY, Hameed BH (2009) J Hazard Mater 171:54–60CrossRefGoogle Scholar
  77. 77.
    Hong S, Rahman TS (2013) J Am Chem Soc 135:7629–7635CrossRefGoogle Scholar
  78. 78.
    Khenkin AM, Neumann R (2000) Angew Chem 39:4088–4090CrossRefGoogle Scholar
  79. 79.
    Mohammad S, Mohammad I (2010) Chin J Chem 28:2216–2220CrossRefGoogle Scholar
  80. 80.
    Hunt JM, Lewan MD, Hennet RJC (1991) Am Assoc Pet Geol Bull 75:795–807Google Scholar
  81. 81.
    Rooney JJ (1998) J Mol Catal A Chem 129:131–134CrossRefGoogle Scholar
  82. 82.
    Chen W-Y, Huang H-M, Lin C-C, Lin F-Y, Chan Y-C (2003) Langmuir 19:9395–9403CrossRefGoogle Scholar
  83. 83.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl Catal B Environ 31:145–157CrossRefGoogle Scholar
  84. 84.
    Gad HMH, Ali MMS, Hassan HS (2013) Arab J Nucl Sci Appl 46:84–98Google Scholar
  85. 85.
    Liu J-H, Wang A-Q, Chi Y-S, Lin H-P, Mou C-Y (2005) J Phys Chem B 109:40–43CrossRefGoogle Scholar
  86. 86.
    Weir MG, Knecht MR, Frenkel AI, Crooks RM (2009) Langmuir 26:1137–1146CrossRefGoogle Scholar
  87. 87.
    Wang Q, Zhang Y, Zhou Y, Zhang Z, Xue J, Xu Y, Zhang C, Sheng X, Kui N (2016) RSC Adv 6:730–739CrossRefGoogle Scholar
  88. 88.
    Huang W, Kuhn JN, Tsung C-KK, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027–2034CrossRefGoogle Scholar
  89. 89.
    Idakiev V, Tabakova T, Tenchev K, Yuan Z-Y, Ren T-Z, Su B-L (2012) J Porous Mater 19:15–20CrossRefGoogle Scholar
  90. 90.
    Sun L, Crooks RM (2002) Langmuir 18:8231–8236CrossRefGoogle Scholar
  91. 91.
    Lang H, May RA, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832–14836CrossRefGoogle Scholar
  92. 92.
    Singh A, Chandler BD (2005) Langmuir 21:10776–10782CrossRefGoogle Scholar
  93. 93.
    Ilunga AK, Meijboom R (2017) Appl Catal B Environ 203:505–514CrossRefGoogle Scholar
  94. 94.
    Poyraz AS, Kuo C-H, Biswas S, King’ondu CK, Suib SL, King’ondu CK, Suib SL (2013) Nat Commun 4:2952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali K. Ilunga
    • 1
  • Reinout Meijboom
    • 1
  1. 1.Department of ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations