Catalysis Letters

, Volume 148, Issue 12, pp 3646–3654 | Cite as

Self-Oscillations During Ethylene Oxidation Over a Ni foil

  • V. Yu. BychkovEmail author
  • Yu. P. Tulenin
  • M. M. Slinko
  • V. I. Lomonosov
  • V. N. Korchak


Oscillatory behavior during ethylene oxidation over a Ni foil has been discovered in the temperature range of 600–800 °C. The oscillatory behavior occurred in C2H4 excess in contrast to the well-known oscillations during C2H4 oxidation over Pt and Rh. The periodic variation in oxygen imbalance together with in situ TGA measurements and the variation in color during the oscillations indicate that the oscillations are closely connected with reversible oxidation of Ni to NiO. The observation of oscillations in pulse supply mode prove also important role of periodic carbon deposition/removal. A characteristic feature of the oscillations during ethylene oxidation is high sensitivity of the oscillation waveform to the catalyst temperature. The oscillations were accompanied by propagation of the oxidation and reduction fronts which could be observed with the naked eye.

Graphical Abstract


Oscillations Ethylene oxidation Ni Spatiotemporal behavior Surface waves 



This work was supported by the Russian Science Foundation (Grant No. 17-13-01057).

Supplementary material

10562_2018_2578_MOESM1_ESM.doc (330 kb)
Supplementary material 1 (DOC 330 KB)

Supplementary material 2 (MP4 355 KB)


  1. 1.
    Slinko MM, Jaeger NJ (2005) Catal Today 105:181CrossRefGoogle Scholar
  2. 2.
    Schüth F, Henry BE, Schmidt LD (1993) Adv Catal 39:51Google Scholar
  3. 3.
    Slinko MM, Jaeger NI (1994) Oscillating heterogeneous catalytic systems, studies in surface science and catalysis, vol 86. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Imbihl R, Ertl G (1995) Chem Rev 95:697CrossRefGoogle Scholar
  5. 5.
    König D, Weber WH, Poindexter BD, Mcbride JR, Graham GW, Otto K (1994) Catal Lett 29:329CrossRefGoogle Scholar
  6. 6.
    Deng YQ, Nevell TG (1996) Faraday Discuss 105:33CrossRefGoogle Scholar
  7. 7.
    Zhang XL, Lee CS-M, Mingos DMP, Hayward DO (2003) Appl Catal A 240:183CrossRefGoogle Scholar
  8. 8.
    Bychkov VYu Tyulenin YuP, Slinko MM, Shashkin DP, Korchak VN (2009) J Catal 267:181CrossRefGoogle Scholar
  9. 9.
    Zhang XL, Hayward DO, Mingos DMP (2002) Catal Lett 83:149CrossRefGoogle Scholar
  10. 10.
    Zhang XL, Hayward DO, Mingos DMP (2003) Catal Lett 86:235CrossRefGoogle Scholar
  11. 11.
    Bychkov VYu Tyulenin YuP, Korchak VN, Aptekar EL (2006) Appl Catal A 3042:21CrossRefGoogle Scholar
  12. 12.
    Saraev AA, Kosolobov SS, Kaichev VV, Bukhtiyarov VI (2015) Kinet Catal 56:598CrossRefGoogle Scholar
  13. 13.
    Zhang XL, Lee CS-M, Mingos DMP, Hayward DO (2003) Appl Catal A 248:129CrossRefGoogle Scholar
  14. 14.
    Bychkov VYu, Tyulenin YuP, Slinko MM, Korchak VN (2007) Appl Catal A 321:180CrossRefGoogle Scholar
  15. 15.
    Liu Y, Fang WP, Weng WZ, Wan HL (2005) J Mol Cat A 239:193CrossRefGoogle Scholar
  16. 16.
    Li JM, Huang FY, Weng WZ, Pei XQ, Luo CR, Lin HQ, Huang CJ, Wan HL (2008) Catal Today 131:179CrossRefGoogle Scholar
  17. 17.
    Wang M, Weng W, Zheng H, Yi X, Huang C, Wan H (2009) J Nat Gas Chem 18:300CrossRefGoogle Scholar
  18. 18.
    Bychkov VYu, Tyulenin YuP, Slinko MM, Korchak VN (2007) Catal Lett 119:339CrossRefGoogle Scholar
  19. 19.
    Bychkov VYu, Tyulenin YuP, Slinko MM, Korchak VN (2011) Catal Lett 141:602CrossRefGoogle Scholar
  20. 20.
    Gladky AYu, Kaichev VV, Ermolaev VK, Bukhtiyarov VI, Parmon VN (2005) Kinet Catal 46:251CrossRefGoogle Scholar
  21. 21.
    Kaichev VV, Gladky AY, Prosvirin IP, Saraev AA, Hävecker M, Knop-Gericke A, Schlögl R, Bukhtiyarov VI (2013) Surf Sci 609:113CrossRefGoogle Scholar
  22. 22.
    Kaichev VV, Teschner D, Saraev AA, Kosolobov SS, Gladky AY, Prosvirin IP, Rudina NA, Ayupov AB, Blume R, Hävecker M, Knop-Gericke A, Schlögl R, Latyshev AV, Bukhtiyarov VI (2016) J Catal 334:23CrossRefGoogle Scholar
  23. 23.
    Bychkov VYu, Tyulenin YuP, Slinko MM, Sokolov S, Korchak VN (2017) Catal Lett 147:1019CrossRefGoogle Scholar
  24. 24.
    Zhukov SA, Barelko VV (1976) Dokl Acad Nauk SSSR 229:655Google Scholar
  25. 25.
    Vayenas CG, Lee B, Michaels J (1980) J Catal 66:36CrossRefGoogle Scholar
  26. 26.
    Vayenas CG, Georgakis C, Michaels J, Tormo J (1981) J Catal 67:348CrossRefGoogle Scholar
  27. 27.
    Kaul DJ, Wolf EE (1986) Chem Eng Sci 41:1101CrossRefGoogle Scholar
  28. 28.
    Kellow JC, Wolf EE (1991) AlChE J 37:1844CrossRefGoogle Scholar
  29. 29.
    Kellow JC, Wolf EE (1990) Chem Eng Sci 45:2597CrossRefGoogle Scholar
  30. 30.
    Dhalewadikar SD, Martinez EN, Varma A (1986) Chem Eng Sci 41:1743CrossRefGoogle Scholar
  31. 31.
    Bychkov VYu, Tyulenin YuP, Slinko MM, Korchak VN (2012) In: Proceedings of the IX international conference “Mechanisms of catalytic reactions”, St. Petersburg, p. 165Google Scholar
  32. 32.
    Tulenin YuP, Sinev MYu, Savkin VV, Korchak VN (2004) Catal Today 91–92:155CrossRefGoogle Scholar
  33. 33.
    Bychkov VYu, Tulenin YuP, Slinko MM, Gorenberg AYa, Korchak VN (2017) Catal Lett 147:2664CrossRefGoogle Scholar
  34. 34.
    Bychkov VYu, Tulenin YuP, Slinko MM, Gordienko YuA, Korchak VN (2018) Catal Lett 148:653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Yu. Bychkov
    • 1
    Email author
  • Yu. P. Tulenin
    • 1
  • M. M. Slinko
    • 1
  • V. I. Lomonosov
    • 1
  • V. N. Korchak
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations