Catalysis Letters

, Volume 148, Issue 11, pp 3514–3523 | Cite as

Synthesis and Characterization Ru–C/SiO2 Aerogel Catalysts for Sugar Hydrogenation Reactions

  • Luis Miguel Sanz-Moral
  • Atte Aho
  • Narendra Kumar
  • Kari Eränen
  • Markus Peurla
  • Janne Peltonen
  • Dmitry Yu. MurzinEmail author
  • Tapio Salmi


Synthesis of materials with combined chemistry and textural properties of carbon and silica aerogels was studied. The synthesized support was modified with ruthenium using evaporation impregnation and deposition–precipitation methods. The ruthenium modification methods were observed to influence the particle size, dispersion, surface area, pore volume and acidity of Ru–C–SiO2 catalysts. Ruthenium particles of 1–2 nm were obtained with a simple impregnation–evaporation method, while deposition precipitations technique gave ruthenium particles ranging from 1 to 8 nm. Small Ru nanoparticles (1–2 nm) were stable even after being exposed at 700 °C or washed with ethanol for regeneration. Furthermore, the catalytic properties of Ru–C–SiO2 catalysts in sugar hydrogenation were also observed to be influenced by the synthesis methods. The catalysts were tested in hydrogenation of sugars with different molecule sizes (i.e. glucose and cellobiose). d-Glucose was more reactive than d-cellobiose when they were studied separately. For the mixture of sugars higher reactivity of both sugars was observed in comparison with neat substrates for the catalyst made by evaporation-impregnation. On the contrary no significant differences between kinetics of the separated sugars and their mixture were observed for the catalyst prepared by deposition–precipitation. The results can be attributed to acidity and a combination of meso and microporosity of the catalysts. The support composite material could also be produced as a monolith, being a promising candidate for future industrial applications.

Graphical Abstract



This research has been financed by the Johan Gadolin Scholarships program from Johan Gadolin Process Chemistry Centre at Åbo Akademi University, by the Spanish Ministry of Economy and Competitiveness through project ENE2014-53459-R and by the Isabel P. Trabal Scholarship from the Fundación Caja de Ingenieros.


  1. 1.
    National Research Council (1992) Catalysis looks to the future. National Academy Press, Washington D.C., p. 1Google Scholar
  2. 2.
    Friend CM, Xu B (2017) Acc Chem Res 50:517–521CrossRefGoogle Scholar
  3. 3.
    Arena BJ (1992) Appl Catal A 87:219–229CrossRefGoogle Scholar
  4. 4.
    Maris EP, Ketchie WC, Oleshko V, Davis RJ (2016) J Phys Chem B 110:7869–7876CrossRefGoogle Scholar
  5. 5.
    Ribeiro LS, Delgado JJ, Órfão JJM, Pereira MFR (2017) Appl Catal B 217:265–274CrossRefGoogle Scholar
  6. 6.
    Romero A, Cantero DA, Nieto-Márquez A, Martínez C, Alonso E, Cocero MJ (2016) Green Chem 18:4051CrossRefGoogle Scholar
  7. 7.
    Lazaridis PA, Karakoulia SA, Teodorescu C, Apostol N, Macovei D, Panteli A, Delimitis A, Coman SM, Parvulescu VI, Triantafyllidis KS (2017) Appl Catal B 214:1–14CrossRefGoogle Scholar
  8. 8.
    Lazaridis PA, Karakoulia S, Delimitis A, Coman SM, Parvulescu VI, Triantafyllidis KS (2015) Catal Today 257:281–290CrossRefGoogle Scholar
  9. 9.
    Mardhiah HH, Ong HC, Masjuki HH, Lim S, Pang YL (2017) ‎Energy Convers Manag 144:10–17CrossRefGoogle Scholar
  10. 10.
    Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T (2015) Catal Today 257:169–176CrossRefGoogle Scholar
  11. 11.
    De S, Dutta S (2017) Saha Appl Catal B 214:1–14CrossRefGoogle Scholar
  12. 12.
    Navarrete A, Muñoz S, Sanz-Moral LM, Brandner JJ, Pfeifer P, Martín Á, Dittmeyer R, Cocero MJ (2015) Faraday Discuss 183:249CrossRefGoogle Scholar
  13. 13.
    Sanz-Moral LM, Romero A, Holz F, Rueda M, Navarrete A, Martín Á (2016) J Taiwan Inst Chem Eng 65:515–521CrossRefGoogle Scholar
  14. 14.
    Anderson ML, Stroud RM, Rolison DR (2002) Nano Lett 2:235–240CrossRefGoogle Scholar
  15. 15.
    Zhong RY, Liao Y, Peng L, Iacobescu RI, Pontikes Y,. Shu L, Ma, Sels BF (2018) Ri. ACS Sustain Chem Eng 6:7859–7870CrossRefGoogle Scholar
  16. 16.
    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Green Chem 12:1560–1563CrossRefGoogle Scholar
  17. 17.
    Kong Y, Zhong Y, Shen X, Cui S, Yang M, Teng K, Zhang J (2012) J Non-Cryst Solids 358:3150–3155CrossRefGoogle Scholar
  18. 18.
    Sanz-Moral LM, Rueda M, Mato R, Martín Á (2014) J Supercrit Fluids 92:24–30CrossRefGoogle Scholar
  19. 19.
    Kuusisto JP, Mikkola J-P, Sparv M, Wärnå J, Heikkilä H, Perälä R, Väyrynen J, Salmi T (2006) Ind Eng Chem Res 45:5900–5910CrossRefGoogle Scholar
  20. 20.
    Sifontes Herrera VA, Oladele O, Kordás K, Eränen K, Mikkola JP, Murzin DY, Salmi T (2011) J Chem Technol Biotechnol 86:658–668CrossRefGoogle Scholar
  21. 21.
    Murzin DY, Simakova OA, Simakova IL, Parmon VN (2011) React Kinet Mech Catal 104:59–266CrossRefGoogle Scholar
  22. 22.
    Sanz-Moral [22]LM, Navarrete A, Sturm G, Link G, Rueda M, Stefanidis G, Martín Á (2017) J Power Sources 353:131–137CrossRefGoogle Scholar
  23. 23.
    Bedia J, Rosas JM, Márquez J, Rodríguez-Mirasol J, Cordero T (2009) Carbon 47:286–294CrossRefGoogle Scholar
  24. 24.
    Morazzani V, Cantin JL, Ortega C, Pajot B, Rahbi R, Rosenbauer M, von Bardeleben HJ, Vazsonyi E (1996) E. Thin Solid Films 276:32–35CrossRefGoogle Scholar
  25. 25.
    Sanz-Moral LM, Rueda M, Nieto A, Novak Z, Knez Z, Martín Á (2013) J Supercritical Fluids 84:74–79CrossRefGoogle Scholar
  26. 26.
    Mermer NK, Karakas SB, Yilmaz MS (2015) J Sci 11:401–404Google Scholar
  27. 27.
    Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M (2015) ACS Appl Mater Interfaces 7:26767–26775CrossRefGoogle Scholar
  28. 28.
    Saib AM, Moodley DJ, Ciobîc IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271–282CrossRefGoogle Scholar
  29. 29.
    Aho A, Roggan S, Simakova OA, Salmi T, Murzin DY (2015) Catal Today 241:195–199CrossRefGoogle Scholar
  30. 30.
    Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) Cellulose 12:563–576CrossRefGoogle Scholar
  31. 31.
    Mishra DK, Dabbawala AA, Park JJ, Jhung SH, Hwang JS (2014) Catal Today 232:99–107CrossRefGoogle Scholar
  32. 32.
    Romero A, Alonso E, Sastre Á, Nieto-Márquez A (2016) Microporous Mesoporous Mater 224:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luis Miguel Sanz-Moral
    • 1
    • 2
  • Atte Aho
    • 1
  • Narendra Kumar
    • 1
  • Kari Eränen
    • 1
  • Markus Peurla
    • 3
  • Janne Peltonen
    • 4
  • Dmitry Yu. Murzin
    • 1
    Email author
  • Tapio Salmi
    • 1
  1. 1.Faculty of Science and Engineering, Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityTurkuFinland
  2. 2.High Pressure Group, Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain
  3. 3.Faculty of Medicine, Laboratory of Electron MicroscopyUniversity of TurkuTurkuFinland
  4. 4.Department of Physics and Astronomy, Laboratory of Industrial PhysicsUniversity of TurkuTurkuFinland

Personalised recommendations