Advertisement

Catalysis Letters

, Volume 148, Issue 10, pp 3165–3177 | Cite as

Palladium Niacin Complex Immobilized on Starch-Coated Maghemite Nanoparticles as an Efficient Homo- and Cross-coupling Catalyst for the Synthesis of Symmetrical and Unsymmetrical Biaryls

  • Elham Rezapour
  • Maasoumeh Jafarpour
  • Abdolreza Rezaeifard
Article

Abstract

In this work, catalytic efficiency of palladium niacin complex immobilized on starch-coated maghemite nanoparticles successfully exploited for homo- and cross-coupling reactions such as Suzuki–Miyaura, Sonogashira-, and Ullmann coupling reactions. The solid catalyst characterized by different methods such as FT-IR, TGA, XPS, EDS and ICP-AES. TEM images revealed a nanosize structure for catalyst and vibrating sample magnetometer (VSM) demonstrated its magnetic property. The reactions proceeded well in the absence of commonly used additives with high selectivity. Potential reusability of magnetically separable palladium catalyst and performing the reactions at environmentally conditions are notable features of the present methods making great potential for practical applications.

Graphical Abstract

Keywords

Cross coupling reactions Homo coupling reactions Niacin complex Palladium complex Suzuki–Miyaura coupling reaction Ullmann coupling reaction Sonogashira coupling reaction 

Notes

Acknowledgements

Support for this work by Research Council of University of Birjand and “Iran Science Elites Federation” is highly appreciated.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2018_2513_MOESM1_ESM.docx (713 kb)
Supplementary material 1 (DOCX 712 KB)

References

  1. 1.
    Ghorbani-Choghamarani A, Tahmasbi B, Moradi P (2016) Palladium-S-propyl-2-aminobenzothioate immobilized on Fe3O4 magnetic nanoparticles as catalyst for Suzuki and Heck reactions in water or poly (ethylene glycol). Appl Organomet Chem 30:422–430CrossRefGoogle Scholar
  2. 2.
    Kantam ML, Srinivas P, Yadav J, Likhar PR, Bhargava S (2009) Trifunctional N,N,O-terdentate amido/pyridyl carboxylate ligated Pd(II) complexes for Heck and Suzuki reactions. J Org Chem 74:4882–4885CrossRefGoogle Scholar
  3. 3.
    Huang Y-T, Tang X, Yang Y, Shen D-S, Tan C, Liu F-S (2012) Efficient pyridylbenzamidine ligands for palladium-catalyzed Suzuki–Miyaura reaction. Appl Organomet Chem 26:701–706CrossRefGoogle Scholar
  4. 4.
    Hajipour AR, Rahimi H, Rafiee F (2012) Dimeric ortho-palladated homoveratrylamine as an efficient homogeneous catalyst for copper-free Sonogashira cross-coupling reaction. Appl Organomet Chem 26:727–730CrossRefGoogle Scholar
  5. 5.
    Dawood KM (2007) Microwave-assisted Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions of aryl chlorides and bromides in water using stable benzothiazole-based palladium(II) precatalysts. Tetrahedron 63:9642–9651CrossRefGoogle Scholar
  6. 6.
    LeBlond CR, Andrews AT, Sun Y, Sowa JR (2001) Activation of aryl chlorides for Suzuki cross-coupling by ligandless, heterogeneous palladium. Org Lett 3:1555–1557CrossRefGoogle Scholar
  7. 7.
    Kim J-H, Kim J-W, Shokouhimehr M, Lee Y-S (2005) Polymer-supported N-heterocyclic carbene–palladium complex for heterogeneous suzuki cross-coupling reaction. J Org Chem 70:6714–6720CrossRefGoogle Scholar
  8. 8.
    Leadbeater NE, Marco M (2002) Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem Rev 102:3217–3274CrossRefGoogle Scholar
  9. 9.
    Minakata S, Komatsu M (2008) Organic reactions on silica in water. Chem Rev 109:711–724CrossRefGoogle Scholar
  10. 10.
    Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chemie Int Ed 49:3428–3459CrossRefGoogle Scholar
  11. 11.
    Lim CW, Lee IS (2010) Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 5:412–434CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Duan H, Li S, Lin Y (2010) Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials. Langmuir 26:6676–6680CrossRefGoogle Scholar
  13. 13.
    Lu A-H, Li W-C, Matoussevitch N, Spliethoff B, Bönnemann H, Schüth F (2005) Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem Commun, 98–100Google Scholar
  14. 14.
    Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRefGoogle Scholar
  15. 15.
    Tartaj P, Serna CJ (2003) Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc 125:15754–15755CrossRefGoogle Scholar
  16. 16.
    Tartaj P, González-Carreño T, Serna CJ (2002) Synthesis of nanomagnets dispersed in colloidal silica cages with applications in chemical separation. Langmuir 18:4556–4558CrossRefGoogle Scholar
  17. 17.
    Lei L, Liu X, Li Y, Cui Y, Yang Y, Qin G (2011) Study on synthesis of poly (GMA)-grafted Fe3O4/SiOX magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization. Mater Chem Phys 125:866–871CrossRefGoogle Scholar
  18. 18.
    Hu F, Neoh KG, Cen L, Kang E-T (2006) Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 7:809–816CrossRefGoogle Scholar
  19. 19.
    Herdt AR, Kim B-S, Taton TA (2007) Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts. Bioconjug Chem 18:183–189CrossRefGoogle Scholar
  20. 20.
    De Vries JG (2001) The Heck reaction in the production of fine chemicals. Can J Chem 79:1086–1092CrossRefGoogle Scholar
  21. 21.
    Poyatos M, Márquez F, Peris E, Claver C, Fernandez E (2003) Preparation of a new clay-immobilized highly stable palladium catalyst and its efficient recyclability in the Heck reaction. New J Chem 27:425–431CrossRefGoogle Scholar
  22. 22.
    Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Efficient Suzuki–Miyaura coupling reaction in water: stabilized Pdo–Montmorillonite clay composites catalyzed reaction. Appl Catal A 469:350–356CrossRefGoogle Scholar
  23. 23.
    Artok L, Bulut H (2004) Heterogeneous Suzuki reactions catalyzed by Pd(0)–Y zeolite. Tetrahedron Lett 45:3881–3884CrossRefGoogle Scholar
  24. 24.
    Mandal S, Roy D, Chaudhari RV, Sastry M (2004) Pt and Pd nanoparticles immobilized on amine-functionalized zeolite: excellent catalysts for hydrogenation and heck reactions. Chem Mater 16:3714–3724CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Chuang KT (1998) Alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill. Ind Eng Chem Res 37:3343–3349CrossRefGoogle Scholar
  26. 26.
    Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2010) CO oxidation on technological Pd–Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111CrossRefGoogle Scholar
  27. 27.
    Soejima T, Aliaga CE, Somorjai GA, Yang P (2011) Nanocrystal bilayer for tandem catalysis. Nat Chem 3(5):372CrossRefGoogle Scholar
  28. 28.
    Li P, Wang L, Zhang L, Wang G-W (2012) Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and heck reactions. Adv Synth Catal 354:1307–1318CrossRefGoogle Scholar
  29. 29.
    Wang J, Xu B, Sun H, Song G (2013) Palladium nanoparticles supported on functional ionic liquid modified magnetic nanoparticles as recyclable catalyst for room temperature Suzuki reaction. Tetrahedron Lett 54:238–241CrossRefGoogle Scholar
  30. 30.
    Yang J, Wang D, Liu W, Zhang X, Bian F, Yu W (2013) Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem 15:3429–3437CrossRefGoogle Scholar
  31. 31.
    Kainz QM, Linhardt R, Grass RN, Vilé G, Pérez-Ram’\irez J, Stark WJ, Reiser O (2014) Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: highly active and recyclable catalysts for alkene hydrogenation. Adv Funct Mater 24:2020–2027CrossRefGoogle Scholar
  32. 32.
    Le X, Dong Z, Jin Z, Wang Q, Ma J (2014) Suzuki–Miyaura cross-coupling reactions catalyzed by efficient and recyclable Fe3O4@SiO2@mSiO2-Pd(II) catalyst. Catal Commun 53:47–52CrossRefGoogle Scholar
  33. 33.
    Rafiee F, Mehdizadeh N, Palladium N-Heterocyclic Carbene complex of vitamin B1 supported on silica-coated Fe3O4 nanoparticles: a green and efficient catalyst for C–C coupling. Catal Lett, 1–10Google Scholar
  34. 34.
    Manjunatha K, Koley TS, Kandathil V, Dateer RB, Balakrishna G, Sasidhar BS, Patil SA, Patil SA (2018) Magnetic nanoparticle-tethered Schiff base-palladium(II): highly active and reusable heterogeneous catalyst for Suzuki–Miyaura cross-coupling and reduction of nitroarenes in aqueous medium at room temperature. Appl Organomet ChemGoogle Scholar
  35. 35.
    Esmaeilpour M, Zahmatkesh S, Fahimi N, Nosratabadi M (2018) Palladium nanoparticles immobilized on EDTA-modified Fe3O4@SiO2 nanospheres as an efficient and magnetically separable catalyst for Suzuki and Sonogashira cross-coupling reactions. Appl Organomet ChemGoogle Scholar
  36. 36.
    Rezaei G, Naghipour A, Fakhri A (2018) Catalytic performance studies of new Pd and Pt schiff base complexes covalently immobilized on magnetite nanoparticles as the environmentally friendly and magnetically recoverable nanocatalyst in C–C cross coupling reactions. Catal Lett 148:732–744CrossRefGoogle Scholar
  37. 37.
    Veisi H, Najafi S, Hemmati S (2018) Pd(II)/Pd (0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki–Miyaura coupling reactions. Int J Biol Macromol 113:186–194CrossRefGoogle Scholar
  38. 38.
    Xiong G, Chen X-L, You L-X, Ren B-Y, Ding F, Dragutan I, Dragutan V, Sun Y-G (2018) La-metal-organic framework incorporating Fe3O4 nanoparticles, post-synthetically modified with Schiff base and Pd. A highly active, magnetically recoverable, recyclable catalyst for C C cross-couplings at low Pd loadings. J Catal 361:116–125CrossRefGoogle Scholar
  39. 39.
    Afradi M, Pour SA, Dolat M, Yazdani-Elah-Abadi A (2017) Nanomagnetically modified vitamin B3 (Fe3O4@Niacin): An efficient and reusable green biocatalyst for microwave-assisted rapid synthesis of 2-amino-3-cyanopyridines in aqueous medium. Appl Organomet ChemGoogle Scholar
  40. 40.
    Baig RBN, Vaddula BR, Nadagouda MN, Varma RS (2015) The copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions. Green Chem 17:1243–1248CrossRefGoogle Scholar
  41. 41.
    Afradi M, Pour SA, Dolat M, Yazdani-Elah-Abadi A (2018) Nanomagnetically modified vitamin B3 (Fe3O4@Niacin): an efficient and reusable green biocatalyst for microwave-assisted rapid synthesis of 2-amino-3-cyanopyridines in aqueous medium. Appl Organomet Chem 32:4103CrossRefGoogle Scholar
  42. 42.
    Davarpanah J, Elahi S, Rezaee P (2018) Synthesis and characterization of mesoporous silica green catalyst, functionalized with nicotinic acid and its use for synthesis of pyran heterocyclic compounds. J Porous Mater 25:161–170CrossRefGoogle Scholar
  43. 43.
    Jafarpour M, Rezaeifard A (2016) A zirconium Schiff base complex immobilized on starch-coated maghemite nanoparticles catalyzes heterogeneous condensation of 1,2-diamines with 1,2-dicarbonyl compounds. Transit Met Chem 41:205–211CrossRefGoogle Scholar
  44. 44.
    Kramareva NV, Stakheev AY, Tkachenko OP, Klementiev KV, Grünert W, Finashina ED, Kustov LM (2004) Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure. J Mol Catal A 209:97–106CrossRefGoogle Scholar
  45. 45.
    Sobhani S, Vahidi Z, Zeraatkar Z, Khodadadi S (2015) A Pd complex of a NNN pincer ligand supported on Fe2O3@SiO2 as the first magnetically recoverable heterogeneous catalyst for C–P bond forming reactions. RSC Adv 5:36552–36559CrossRefGoogle Scholar
  46. 46.
    Mosivand S, Kazeminezhad I (2015) Synthesis of electrocrystallized cobalt ferrite nanopowders by tuning the cobalt salt concentration. RSC Adv 5:14796–14803CrossRefGoogle Scholar
  47. 47.
    Wu Z, Sheng Z, Liu Y, Wang H, Tang N, Wang J (2009) Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. J Hazard Mater 164:542–548CrossRefGoogle Scholar
  48. 48.
    Menicagli R, Samaritani S, Signore G, Vaglini F, Dalla Via L (2004) In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: new molecules in anticancer research. J Med Chem 47:4649–4652CrossRefGoogle Scholar
  49. 49.
    Yang F, Xie J, Guo H, Xu B, Li C (2012) Novel discotic liquid crystal oligomers: 1,3,5-triazine-based triphenylene dimer and trimer with wide mesophase. Liq Cryst 39:1368–1374CrossRefGoogle Scholar
  50. 50.
    Herrmann WA (2002) N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chemie Int Ed 41:1290–1309CrossRefGoogle Scholar
  51. 51.
    Manyar HG, Paun C, Pilus R, Rooney DW, Thompson JM, Hardacre C (2010) Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts. Chem Commun 46:6279–6281CrossRefGoogle Scholar
  52. 52.
    Horniakova J, Raja T, Kubota Y, Sugi Y (2004) Pyridine-derived palladium complexes immobilized on ordered mesoporous silica as catalysts for Heck-type reactions. J Mol Catal A 217:73–80CrossRefGoogle Scholar
  53. 53.
    O’Brien CJ, Kantchev EAB, Valente C, Hadei N, Chass GA, Lough A (2006) Easily prepared air-and moisture-stable Pd–NHC (NHC = N-heterocyclic carbene) complexes: a reliable, user-friendly, highly active palladium precatalyst for the Suzuki–Miyaura reaction. Chem Eur J 12:4743–4748CrossRefGoogle Scholar
  54. 54.
    Tu T, Feng X, Wang Z, Liu X (2010) A robust hydrophilic pyridine-bridged bis-benzimidazolylidene palladium pincer complex: Synthesis and its catalytic application towards Suzuki-Miyaura couplings in aqueous solvents. Dalton Trans 39:10598–10600CrossRefGoogle Scholar
  55. 55.
    Zeng F, Yu Z (2006) Pyridyl-supported pyrazolyl- N-heterocyclic carbene ligands and the catalytic activity of their Palladium complexes in Suzuki–Miyaura reactions. J Org Chem 71:5274–5281CrossRefGoogle Scholar
  56. 56.
    Nájera C, Gil-Moltó J, Karlström S, Falvello LR (2003) Di-2-pyridylmethylamine-based palladium complexes as new catalysts for Heck, Suzuki, and Sonogashira reactions in organic and aqueous solvents. Org Lett 5:1451–1454CrossRefGoogle Scholar
  57. 57.
    Yaşar S, şahin Ç, Arslan M, Özdemir І (2015) Synthesis, characterization and the Suzuki–Miyaura coupling reactions of N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) complexes. J Organomet Chem 776:107–112CrossRefGoogle Scholar
  58. 58.
    Nasielski J, Hadei N, Achonduh G, Kantchev EAB, O’Brien CJ, Lough A (2010) Structure-activity relationship analysis of Pd–PEPPSI complexes in cross-couplings: a close inspection of the catalytic cycle and the precatalyst activation model. Chem Eur J 16:10844–10853CrossRefGoogle Scholar
  59. 59.
    Tu T, Sun Z, Fang W, Xu M, Zhou Y (2012) Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for Suzuki–Miyaura couplings with sterically hindered substrates. Org Lett 14:4250–4253CrossRefGoogle Scholar
  60. 60.
    Tu T, Malineni J, Doetz KH (2008) A novel pyridine-bridged bis-benzimidazolylidene pincer Palladium complex: synthesis and catalytic properties. Adv Synth Catal 350:1791–1795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Catalysis Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of BirjandBirjandIran

Personalised recommendations