Advertisement

Catalysis Letters

, Volume 148, Issue 10, pp 3158–3164 | Cite as

Cobalt(II)–Salen Complexes for Photocatalytic Hydrogen Production in Noble Metal-Free Molecular Systems

  • Cheng-Bo Li
  • Peng Gong
  • Ying Yang
  • Hong-Yan Wang
Article
  • 215 Downloads

Abstract

Developing cost-effective hydrogen-production systems is always appealing in order to satisfy the future energy request. Here, two Co(II)–salen complexes 1 and 2 were firstly introduced into homogeneous photocatalytic hydrogen-evolution systems. Based on these two cobalt complexes, we developed noble-metal-free hydrogen production systems using xanthene dyes [such as Disodium salts of Eosin Y (EY2−), Rose Bengal (RB2−) and Fluorescein (Fl2−)] as photosensitizers and trimethylamine (TEA) as sacrificial donor. Complex 1 presented the best catalytic performance for hydrogen production with a TON of 319 based on catalyst within 9 h irradiation, which is superior to other cobalt complexes in noble-metal-free systems. UV–Vis spectra studies demonstrate that EY2− suffered quick decomposition, especially under the presence of complex 1, which should be responsible for hydrogen-production deactivation. The thermodynamically favorable photo-induced electron transfer from 3*EY2− to complex 1 was supported by investigations involving fluorescence quenching and cyclic voltammetry studies. However, the immediate color change (within seconds) as the hydrogen production systems exposed under the irradiation indicates that EY2− firstly suffered dehalogenation which functions as the real active dyes.

Graphical Abstract

Keywords

Photocatalysis Hydrogen production Noble-metal-free Molecular system 

Notes

Acknowledgements

We are grateful to the funding support from Shaanxi Provincial Education Department (No 15JK1708), the Science Foundation of Northwest University (No 14NW12), Shannxi Provincial Science & Technology Department (No 2017JQ2012), China Scholarship Council and Top-rated Discipline construction scheme of Shaanxi higher education.

Supplementary material

10562_2018_2509_MOESM1_ESM.pdf (1007 kb)
Supplementary material 1 (PDF 1006 KB)

References

  1. 1.
    Lubitz W, Tumas W (2007) Chem Rev 107:3900–3903CrossRefGoogle Scholar
  2. 2.
    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7266CrossRefGoogle Scholar
  3. 3.
    Thoi VS, Sun Y, Long JR, Chang CJ (2013) Chem Soc Rev 42:2388–2400CrossRefPubMedGoogle Scholar
  4. 4.
    Li C-B, Li Z-J, Yu S, Wang G-X, Wang F, Meng Q-Y, Chen B, Feng K, Tung C-H, Wu L-Z (2013) Energy Environ Sci 6:2597–2602CrossRefGoogle Scholar
  5. 5.
    Wu L-Z, Chen B, Li Z-J, Tung C-H (2014) Acc Chem Res 47:2177–2185CrossRefPubMedGoogle Scholar
  6. 6.
    Du P, Knowles K, Eisenberg R (2008) J Am Chem Soc 130:12576–12577CrossRefPubMedGoogle Scholar
  7. 7.
    Wang W-G, Wang F, Wang H-Y, Tung C-H, Wu L-Z (2012) Dalton Trans 41:2420–2426CrossRefPubMedGoogle Scholar
  8. 8.
    Kalyanasundaram K (1982) Coord Chem Rev 46:159–244CrossRefGoogle Scholar
  9. 9.
    Ott S, Kritikos M, Åkermark B, Sun L (2003) Angew Chem Int Ed 42:3285–3288CrossRefGoogle Scholar
  10. 10.
    Wolpher H, Borgström M, Hammarström L, Bergquist J, Sundström V, Styring S, Sun L, Åkermark B (2003) Inorg Chem Commun 6:989–991CrossRefGoogle Scholar
  11. 11.
    Na Y, Wang M, Pan J, Zhang P, Åkermark B, Sun L (2008) Inorg Chem 47:2805–2810CrossRefPubMedGoogle Scholar
  12. 12.
    Gao W, Sun J, Åkermark T, Li M, Eriksson L, Sun L, Åkermark B (2010) Chem Eur J 16:2537–2546CrossRefPubMedGoogle Scholar
  13. 13.
    Sano Y, Onoda A, Hayashi T (2011) Chem Commun 47:8229–8231CrossRefGoogle Scholar
  14. 14.
    Cao W-N, Wang F, Wang H-Y, Chen B, Feng K, Tung C-H, Wu L-Z (2012) Chem Commun 48:8081–8083CrossRefGoogle Scholar
  15. 15.
    Gärtner F, Sundararaju B, Surkus A-E, Boddien A, Loges B, Junge H, Dixneuf PH, Beller M (2009) Angew Chem Int Ed 48:9962–9965CrossRefGoogle Scholar
  16. 16.
    Cui H-H, Hu M-Q, Wen H-M, Chai G-l, Ma C-B, Chen H, Chen C-N (2012) Dalton Trans 41:13899–13907CrossRefPubMedGoogle Scholar
  17. 17.
    Leung C-F, Ng S-M, Ko C-C, Man W-L, Wu J, Chen L, Lau T-C (2012) Energy Environ Sci 5:7903–7907CrossRefGoogle Scholar
  18. 18.
    Yu T, Zeng Y, Chen J, Li Y-Y, Yang G, Li Y (2013) Angew Chem Int Ed 52:1–6CrossRefGoogle Scholar
  19. 19.
    Wang F, Liang W-J, Wang WG, Chen B, Feng K, Zhang LP, Tung CH, Wu LZ (2012) Acta Chim Sinica 70:2306–2310CrossRefGoogle Scholar
  20. 20.
    Gao W, Liu J, Jiang W, Wang M, Weng L, Åkermark B, Sun L (2008) C R Chim 11:915–921CrossRefGoogle Scholar
  21. 21.
    Wang H-Y, Wang W-G, Si G, Wang F, Tung C-H, Wu L-Z (2010) Langmuir 26:9766–9771CrossRefPubMedGoogle Scholar
  22. 22.
    Guttentag M, Rodenberg A, Kopelent R, Probst B, Buchwalder C, Brandstätter M, Hamm P, Alberto R (2012) Eur J Inorg Chem 2012:59–64CrossRefGoogle Scholar
  23. 23.
    Liu J-H, Jiang W-N (2012) Dalton Trans 41:9700–9707CrossRefPubMedGoogle Scholar
  24. 24.
    Rodenberg A, Orazietti M, Probst B, Bachmann C, Alberto R, Baldridge KK, Hamm P (2014) Inorg Chem 54:646–657CrossRefPubMedGoogle Scholar
  25. 25.
    Wang W-G, Wang F, Wang H-Y, Si G, Tung C-H, Wu L-Z (2010) Chem Asian J 5:1796–1803CrossRefPubMedGoogle Scholar
  26. 26.
    Dong J, Wang M, Zhang P, Yang S, Liu J, Li X, Sun L (2011) J Phys Chem C 115:15089–15096CrossRefGoogle Scholar
  27. 27.
    Li X, Wang M, Zheng D, Han K, Dong J, Sun L (2012) Energy Environ Sci 5:8220–8224CrossRefGoogle Scholar
  28. 28.
    Cui H-H, Wang J-Y, Hu M-Q, Ma C-B, Wen H-M, Song X-W, Chen C-N (2013) Dalton Trans 42:8684–8691CrossRefPubMedGoogle Scholar
  29. 29.
    Orain C, Quentel F, Gloaguen F (2014) ChemSusChem 7:638–643CrossRefPubMedGoogle Scholar
  30. 30.
    Rao H, Wang Z-Y, Wang J, Hu X-Z, Fan Y-T, Hou H-W (2014) Int J Energy Res 38:2003–2009CrossRefGoogle Scholar
  31. 31.
    Zheng H-Q, Rao H, Wang J, Fan Y-T, Hou H-W (2015) J Power Sources 273:1038–1047CrossRefGoogle Scholar
  32. 32.
    Hu X-Z, Zheng H-Q, Rao H, Pan C-M, Fan Y-T (2015) J Energy Inst 88:359–363CrossRefGoogle Scholar
  33. 33.
    Rao H, Wang Z-Y, Zheng H-Q, Wang X-B, Pan C-M, Fan Y-T, Hou H-W (2015) Catal Sci Technol 5:2332–2339CrossRefGoogle Scholar
  34. 34.
    Han Z, McNamara WR, Eum M-S, Holland PL, Eisenberg R (2012) Angew Chem Int Ed 51:1667–1670CrossRefGoogle Scholar
  35. 35.
    Han Z, Shen L, Brennessel WW, Holland PL, Eisenberg R (2013) J Am Chem Soc 135:14659–14669CrossRefPubMedGoogle Scholar
  36. 36.
    McCormick TM, Calitree BD, Orchard A, Kraut ND, Bright FV, Detty MR, Eisenberg R (2010) J Am Chem Soc 132:15480–15483CrossRefPubMedGoogle Scholar
  37. 37.
    Han J, Zhang W, Zhou T, Wang X, Xu R (2012) RSC Adv 2:8293–8296CrossRefGoogle Scholar
  38. 38.
    Jacques PA, Artero V, Pecaut J, Fontecave M (2009) Proc Natl Acad Sci USA 106:20627–20632CrossRefPubMedGoogle Scholar
  39. 39.
    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Acc Chem Res 42:1995–2004CrossRefPubMedGoogle Scholar
  40. 40.
    Kaeffer N, Chavarot-Kerlidou M, Artero V (2015) Acc Chem Res 48:1286–1295CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    McNamara WR, Han Z, Alperin PJ, Brennessel WW, Holland PL, Eisenberg R (2011) J Am Chem Soc 133:15368–15371CrossRefPubMedGoogle Scholar
  42. 42.
    cNamara WR, Han Z, Yin CJ, Brennessel WW, Holland PL, Eisenberg R (2012) Proc Natl Acad Sci USA 109:15594–15599CrossRefGoogle Scholar
  43. 43.
    Zarkadoulas A, Koutsouri E, Mitsopoulou CA (2012) Coord Chem Rev 256:2424–2434CrossRefGoogle Scholar
  44. 44.
    Eady SC, Peczonczyk SL, Maldonado S, Lehnert N (2014) Chem Commun 50:8065–8068CrossRefGoogle Scholar
  45. 45.
    Eady SC, MacInnes MM, Lehnert N (2017) Inorg Chem 56:11654–11667CrossRefPubMedGoogle Scholar
  46. 46.
    Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) J Am Chem Soc 133:9212–9215CrossRefPubMedGoogle Scholar
  47. 47.
    Guttentag M, Rodenberg A, Bachmann C, Senn A, Hamm P, Alberto R (2013) Dalton Trans 42:334–337CrossRefPubMedGoogle Scholar
  48. 48.
    Sun Y, Sun J, Long JR, Yang P, Chang CJ (2013) Chem Sci 4:118–124CrossRefGoogle Scholar
  49. 49.
    Tong L, Zong R, Thummel RP (2014) J Am Chem Soc 136:4881–4884CrossRefPubMedGoogle Scholar
  50. 50.
    Queyriaux N, Jane RT, Massin J, Artero V, Chavarot-Kerlidou M (2015) Coord Chem Rev 304–305:3–19CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    McCrory CCL, Uyeda C, Peters JC (2012) J Am Chem Soc 134:3164–3170CrossRefPubMedGoogle Scholar
  52. 52.
    Roy S, Bacchi M, Berggren G, Artero V (2015) ChemSusChem 8:3632–3638CrossRefPubMedGoogle Scholar
  53. 53.
    Gueret R, Castillo CE, Rebarz M, Thomas F, Hargrove A-A, Pécaut J, Sliwa M, Fortage J, Collomb M-N (2015) J Photochem Photobiol B 152(Part A):82–94CrossRefPubMedGoogle Scholar
  54. 54.
    Gimbert-Suriñach C, Albero J, Stoll T, Fortage J, Collomb M-N, Deronzier A, Palomares E, Llobet A (2014) J Am Chem Soc 136:7655–7661CrossRefPubMedGoogle Scholar
  55. 55.
    Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R (2009) J Am Chem Soc 131:9192–9194CrossRefPubMedGoogle Scholar
  56. 56.
    Wang Z-Y, Rao H, Deng M-F, Fan Y-T, Hou H-W (2013) Phys Chem Chem Phys 15:16665–16671CrossRefPubMedGoogle Scholar
  57. 57.
    Wezenberg SJ, Kleij AW (2008) Angew Chem Int Ed 47:2354–2364CrossRefGoogle Scholar
  58. 58.
    Cozzi PG (2004) Chem Soc Rev 33:410–421CrossRefPubMedGoogle Scholar
  59. 59.
    Rhodes B, Rowling S, Tidswell P, Woodward S, Brown SM (1997) J Mol Catal A 116:375–384CrossRefGoogle Scholar
  60. 60.
    Räisänen MT, Korpi H, Sundberg MR, Savin A, Leskelä M, Repo T (2013) Inorg Chim Acta 394:203–209CrossRefGoogle Scholar
  61. 61.
    Chen H, Sun Z, Ye S, Lu D, Du P (2015) J Mater Chem A 3:15729–15737CrossRefGoogle Scholar
  62. 62.
    Khnayzer RS, Thoi VS, Nippe M, King AE, Jurss JW, El Roz KA, Long JR, Chang CJ, Castellano FN (2014) Energy Environ Sci 7:1477–1488CrossRefGoogle Scholar
  63. 63.
    Min S, Lu G (2012) J Phys Chem C 116:25415–25424CrossRefGoogle Scholar
  64. 64.
    Shimidzu T, Iyoda T, Koide Y (1985) J Am Chem Soc 107:35–41CrossRefGoogle Scholar
  65. 65.
    Hashimoto K, Kawai T, Sakata T (1984) The mechanism of photocatalytic hydrogen production with halogenated fluorescein derivatives. Centre National de la Recherche Scientifique, ParisGoogle Scholar
  66. 66.
    Lambert CR, Kochevar IE (1997) Photochem Photobiol 66:15–25CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang W, Hong J, Zheng J, Huang Z, Zhou J, Xu R (2011) J Am Chem Soc 133:20680–20683CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cheng-Bo Li
    • 1
  • Peng Gong
    • 1
  • Ying Yang
    • 1
  • Hong-Yan Wang
    • 2
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials ScienceNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations