Catalysis Letters

, Volume 148, Issue 10, pp 3051–3061 | Cite as

Impact of Chain Length on the Catalytic Performance in Hydroisomerization of n-Alkanes Over Commercial and Alkaline Treated *BEA Zeolites

  • H. Sammoury
  • J. Toufaily
  • K. Cherry
  • Y. Pouilloux
  • T. Hamieh
  • L. Pinard


The present paper highlights the influence of desilication of nanocrystal *BEA zeolites (CP811 and CP814E) by different alkaline treatments in presence of NaOH alone, NaOH + TPABr and NaOH + TBAOH, on the catalytic performance in the hydroisomerization reactions of n-alkanes (n-C10, n-C12 and n-C14). The well-balanced catalyst was reached after impregnation of 1.5 wt% of Pt, where the activity and isomers selectivity was seen to be the maximum, knowing that the Pt content effect was studied on the CP811 zeolite catalyst. All the other catalysts were after impregnated by approximately 1.5 wt% of Pt. The improvement of the textural properties by means of desilication was not always accounting for the influence of the catalytic performance of the catalysts, but rather it may be the bifunctional characteristics in charge. The impact of chain length was investigated on the catalysts to study if the presence of the inter- and intracrystalline mesopores would account for better diffusion of larger molecules as, n-C12 and n-C14. It was found on the majority of the catalysts that the activity was high whether the chain length was, but the isomers selectivity was decreasing with chain length except on one catalyst that possesses high textural and bifunctional characteristics. Among the three n-alkanes studied, n-C12 have marked the highest TOF values and lowest selectivity to isomers, a phenomenon attributed to the confinement effect that seems to increase the interaction of n-C12 molecules with the acidic sites of the zeolites, apparently causing their strength to be higher. This effect was pronounced more with n-C12 than the other two n-alkanes.

Graphical Abstract


*BEA zeolite Desilication Bifunctional characteristics Hydroisomerization Confinement effect 



Thanks for the “Islamic Association for Guidance and Higher Education” present in Lebanon, for its financial support.

Supplementary material

10562_2018_2502_MOESM1_ESM.docx (8.1 mb)
Supplementary material 1 (DOCX 8333 KB)


  1. 1.
    Qi J, Zhao T, Xu X, Li F, Sun G, Miao C, Wang H (2009) Catal Commun 10:1523CrossRefGoogle Scholar
  2. 2.
    Tarach K, Góra-Marek K, Tekla J, Brylewska K, Datka J, Mlekodaj K, Makowski W, Igualada López MC, Martínez Triguero J, Rey F (2014) J Catal 312:46CrossRefGoogle Scholar
  3. 3.
    Bertrand-Drira C, Cheng X, Cacciaguerra T, Trens P, Melinte G, Ersen O, Minoux D, Finiels A, Fajula F, Gerardin C (2015) Microporous Mesoporous Mater 213:142CrossRefGoogle Scholar
  4. 4.
    Muraza O, Abdul-lateef A, Tago T, Nandiyanto ABD, Konno H, Nakasaka Y, Yamani ZH, Masuda T (2015) Microporous Mesoporous Mater 206:136CrossRefGoogle Scholar
  5. 5.
    Bouchy C, Hastoy G, Guillon E, Martens JA (2009) Oil Gas Sci Technol - Rev IFP 64:91CrossRefGoogle Scholar
  6. 6.
    Weisz P (1962) Adv Catal 13:137Google Scholar
  7. 7.
    Guisnet M (2013) Catal Today 218–219:123CrossRefGoogle Scholar
  8. 8.
    Batalha N, Pinard L, Bouchy C, Guillon E, Guisnet M (2013) J Catal 307:122CrossRefGoogle Scholar
  9. 9.
    Astafan A, Pouilloux Y, Patarin J, Bats N, Bouchy C, Jean Daou T, Pinard L (2016) New J Chem 40:4335CrossRefGoogle Scholar
  10. 10.
    Zecevic J, Vanbutsele G, de Jong KP, Martens JA (2015) Nature 528:245CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Landau MV, Vradman L, Valtchev V, Lezervant J, Liubich E, Talianker M (2003) Ind Eng Chem Res 42:2773CrossRefGoogle Scholar
  12. 12.
    Francis J, Guillon E, Bats N, Pichon C, Corma A, Simon LJ (2011) Appl Catal Gen 409:140CrossRefGoogle Scholar
  13. 13.
    Sammoury H, Toufaily J, Cherry K, Hamieh T, Pouilloux Y, Pinard L (2018) Appl Catal Gen 551:1CrossRefGoogle Scholar
  14. 14.
    Marcilly C (2002) Acido-basic catalysis, application to refining and petrochemistry. Editions Technip, ParisGoogle Scholar
  15. 15.
    Soualah A, Lemberton JL, Pinard L, Chater M, Magnoux P, Moljord K (2008) Appl Catal A 336:23CrossRefGoogle Scholar
  16. 16.
    Konnov SV, Ivanova II, Ponomareva OA, Zaikovskii VI (2012) Microporous Mesoporous Mater 164:222CrossRefGoogle Scholar
  17. 17.
    Martens JA, Verboekend D, Thomas K, Vanbutsele G, Pérez-Ramírez J, Gilson J-P (2013) Catal Today 218:135CrossRefGoogle Scholar
  18. 18.
    Guisnet M, Ayrault P, Coutanceau C, Fernanda Alvarez M, Datka J (1997) J Chem Soc Faraday Trans 93:1661CrossRefGoogle Scholar
  19. 19.
    Guisnet M, Ayrault P, Datka J (1997) Pol J Chem 71:1455Google Scholar
  20. 20.
    Sammoury H, Toufaily J, Cherry K, Hamieh T, Pouilloux Y, Pinard L (2018) Microporous Mesoporous Mater 267:150CrossRefGoogle Scholar
  21. 21.
    Li X, Shantz DF (2010) J Phys Chem C 114:8449CrossRefGoogle Scholar
  22. 22.
    Helmkamp MM, Davis ME (1995) Annu Rev Mater Sci 25:161CrossRefGoogle Scholar
  23. 23.
    Verboekend D, Pérez-Ramírez J (2011) Chem—Eur J 17:1137CrossRefPubMedGoogle Scholar
  24. 24.
    Groen JC, Abelló S, Villaescusa LA, Pérez-Ramírez J (2008) Microporous Mesoporous Mater 114:93CrossRefGoogle Scholar
  25. 25.
    Holm MS, Hansen MK, Christensen CH (2009) Eur J Inorg Chem 2009:1194CrossRefGoogle Scholar
  26. 26.
    Saxena SK, Viswanadham N, Sharma T (2014) J Mater Chem A 2:2487CrossRefGoogle Scholar
  27. 27.
    Pérez-Ramírez J, Abelló S, Bonilla A, Groen JC (2009) Adv Funct Mater 19:164CrossRefGoogle Scholar
  28. 28.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Merabti R, Pinard L, Lemberton JL, Magnoux P, Barama A, Moljord K (2010) React Kinet Mech Catal 100:1Google Scholar
  30. 30.
    Gorring RL (1973) J Catal 31:13CrossRefGoogle Scholar
  31. 31.
    Derouane EG, Nagy JB, Fernandez C, Gabelica Z, Laurent E, Maljean P (1988) Appl Catal 40:L1CrossRefGoogle Scholar
  32. 32.
    Pera-Titus M, Llorens J (2010) Appl Surf Sci 256:5305CrossRefGoogle Scholar
  33. 33.
    Jones AJ, Carr RT, Zones SI, Iglesia E (2014) J Catal 312:58CrossRefGoogle Scholar
  34. 34.
    Derouane EG (2007) Microporous and Mesoporous Mater 104:46CrossRefGoogle Scholar
  35. 35.
    Jones AJ, Iglesia E (2015) ACS Catal 5:5741CrossRefGoogle Scholar
  36. 36.
    Jones AJ, Zones SI, Iglesia E (2014) J Phys Chem C 118:17787CrossRefGoogle Scholar
  37. 37.
    Noh G, Shi Z, Zones SI, Iglesia E (2018) J. Catal. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Sammoury
    • 1
    • 2
  • J. Toufaily
    • 2
  • K. Cherry
    • 2
  • Y. Pouilloux
    • 1
  • T. Hamieh
    • 2
  • L. Pinard
    • 1
  1. 1.Université de Poitiers, CNRS UMR7285, Institut de Chimie des Milieux et Matériaux de PoitiersPoitiers Cedex 9France
  2. 2.Université Libanaise, Laboratoire des matériaux, catalyse, environnement et méthodes analytiques (MCEMA)HadathLebanon

Personalised recommendations