Catalysis Letters

, Volume 148, Issue 9, pp 2703–2708 | Cite as

Electrocatalytic H2 Evolution of Bis(3,5-di-methylpyrazol-1-yl)acetate Anchored Hexa-coordinated Co(II) Derivative

  • Kuheli Das
  • Belete B. Beyene
  • Amitabha Datta
  • Eugenio Garribba
  • Chen-Hsiung Hung


A mononuclear Co(II) derivative, (1) is afforded by employing a ‘scorpionate’ type precursor, bdtbpza [bdtbpza = bis(3,5-di-t-butylpyrazol-1-yl)acetate]. Single crystal X-ray structure reveals that the CoII ion exhibits an octahedral geometry possessing on a O6 coordination environment. Detailed EPR interpretation and electrocatalytic hydrogen evolution study are reported. Electrochemical and catalytic study of 1 in DMSO with the presence of acetic acid as weak proton source shows an observed rate constant of 3.7 × 103 s−1 and hydrogen evolution Faradaic efficiency of 74.7%. The catalytic process requires two-electron reduction of the catalyst and formation of a cobalt(II)-hydride species as reactive intermediate.

Graphical Abstract


Co(II) Crystal structure EPR Electrocatalytic H2 evolution 



AD and CHH would like to express their appreciation to the Ministry of Science and Technology, Taiwan for financial assistance.

Supplementary material

10562_2018_2477_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1198 KB)


  1. 1.
    Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) J Am Chem Soc 133:9212–9215CrossRefPubMedGoogle Scholar
  2. 2.
    Stubbert BD, Peters JC, Gray HB (2011) J Am Chem Soc 133:18070–18073CrossRefPubMedGoogle Scholar
  3. 3.
    Sampson MD, Kubiak CP (2015) Inorg Chem 54:6674–6676CrossRefPubMedGoogle Scholar
  4. 4.
    Hu X, Cossairt BM, Brunschwig BS, Lewis NS, Peters JC (2005) Chem Commun 37:4723–4725CrossRefGoogle Scholar
  5. 5.
    Du P, Eisenberg R (2012) Energy Environ Sci 5:6012–6021CrossRefGoogle Scholar
  6. 6.
    Khusnutdinova D, Beiler AM, Wadsworth BL, Jacob SI, Moore GF (2017) Chem Sci 8:253–259CrossRefPubMedGoogle Scholar
  7. 7.
    Nippe M, Khnayzer RS, Panetier JA, Zee DZ, Olaiya BS, Head-Gordon M, Chang CJ, Castellano FN, Long JR (2013) Chem Sci 4:3934–3945CrossRefGoogle Scholar
  8. 8.
    Beyene BB, Mane SB, Hung CH (2015) Chem Commun 51:15067–15070CrossRefGoogle Scholar
  9. 9.
    Zhang DX, Yuan HQ, Wang HH, Ali A, Wen WH, Xie AN, Zhan SZ, Liu HY (2017) Trans Met Chem 42:773–782CrossRefGoogle Scholar
  10. 10.
    Hartley CL, DiRisio RJ, Screen ME, Mayer KJ, McNamara WR (2016) Inorg Chem 55:8865–8870CrossRefPubMedGoogle Scholar
  11. 11.
    Tatematsu R, Inomata T, Ozawa T, Masuda H (2016) Angew Chem Int Ed 55:5100–5100CrossRefGoogle Scholar
  12. 12.
    Kucernak ARJ, Sundaram VNN (2014) J Mat Chem A 2:17435–17445CrossRefGoogle Scholar
  13. 13.
    Tsay C, JYang JY (2016) J Am Chem Soc 138:14174–14177CrossRefPubMedGoogle Scholar
  14. 14.
    Văduva CC, Vaszilcsin N, Kellenberger A, Medeleanu M (2011) Int J Hydrog Energy 36:6994–7001CrossRefGoogle Scholar
  15. 15.
    Datta A, Das K, Beyene BB, Garribba E, Gajewska MJ, Hung CH (2017) Mol Cat 439:81–90CrossRefGoogle Scholar
  16. 16.
    Potapov AS, Nudnova EA, Khlebnikov AI, Ogorodnikov VD, Petrenko TV (2015) Inorg Chem Commun 53:72–75CrossRefGoogle Scholar
  17. 17.
    Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X (2014) Energy Env Sci 7:2624–2629CrossRefGoogle Scholar
  18. 18.
    Song XW, Meng Y, Zhang CL, Ma CB, Chen CN (2017) Inorg Chem Commun 76:52–54CrossRefGoogle Scholar
  19. 19.
    Hu X, Brunschwig BS, Peters JC (2007) J Am Chem Soc 129:8988–8998CrossRefPubMedGoogle Scholar
  20. 20.
    Beyene BB, Mane SB, Leonardus M, Hung CH (2017) Chem Select 2:10565–10571Google Scholar
  21. 21.
    Zhang W, Lai W, Cao R (2017) Chem Rev 117:3717–3797CrossRefPubMedGoogle Scholar
  22. 22.
    Koca A (2009) Int J Hydrog Energy 34:2107–2112CrossRefGoogle Scholar
  23. 23.
    Kim J, Rajkumar E, Kim S, Park YM, Kim Y, Kim SJ, Lee HJ (2017) Cat Today 295:75–81CrossRefGoogle Scholar
  24. 24.
    Beck A, Weibert B, Burzlaff N (2001) Eur J Inorg Chem 2001:521–527CrossRefGoogle Scholar
  25. 25.
    Beck A, Barth A, Hubner E, Burzlaff N (2003) Inorg Chem 42:7182–7188CrossRefPubMedGoogle Scholar
  26. 26.
    Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, New YorkGoogle Scholar
  27. 27.
    Kozlevčar B, Jakomin K, Počkaj M, Jagličić Z, Beyer A, Burzlaff N, Kitanovski N (2015) Eur J Inorg Chem 2015:3688–3693CrossRefGoogle Scholar
  28. 28.
    Kojima K, Matsuda J, Kojima N, Ban T, Tsujikawa I (1987) Bull Chem Soc Jpn 60:3213–3217CrossRefGoogle Scholar
  29. 29.
    Sanna D, Garribba E, Micera G (2009) J Inorg Biochem 103:648–655CrossRefPubMedGoogle Scholar
  30. 30.
    Sanna D, Bíró L, Buglyó P, Micera G, Garribba E (2012) J Inorg Biochem 115:87–99CrossRefPubMedGoogle Scholar
  31. 31.
    Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E (2017) Dalton Trans 46:8950–8967CrossRefPubMedGoogle Scholar
  32. 32.
    Abragam A, Pryce MHL (1951) Proc R Soc London Ser A 1951:173–191CrossRefGoogle Scholar
  33. 33.
    Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) Inorg Chem 19:1301–1304CrossRefGoogle Scholar
  34. 34.
    Thuery P, Zarembowitch J (1986) Inorg Chem 25:2001–2008CrossRefGoogle Scholar
  35. 35.
    Min KS, Weyhermuller T, Wieghardt K (2004) Dalton Trans 1:178–186Google Scholar
  36. 36.
    Rizzi C, Brondino CD, Calvo R, Baggio R, Garland MT, Rapp RE (2003) Inorg Chem 42:4409–4416CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryAcademia SinicaTaipeiTaiwan
  2. 2.Department of ChemistryBahir Dar UniversityBahir DarEthiopia
  3. 3.Dipartimento di Chimica e FarmaciaUniversità di SassariSassariItaly

Personalised recommendations