Catalysis Letters

, Volume 148, Issue 8, pp 2459–2471 | Cite as

Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light

  • Sebastiano CataldoEmail author
  • Bert M. Weckhuysen
  • Alberto Pettignano
  • Bruno Pignataro


Enabling solar and/or visible light-driven photocatalysis is a crucial step to access innovative applications in environmental science and sustainable energy. Titanium dioxide is the most used photocatalyst because of its low cost and toxicity, however it is also limitedly active under visible light irradiation due to its wide band gap. Among its polymorphs, brookite holds promising optoelectronic properties for visible light photocatalysis, which have to the best of our knowledge been limitedly exploited. Here, a C,S,N-doped brookite-based TiO2 has been prepared via a rapid one-pot sol–gel synthesis. Besides substantially extending the visible light absorption via band gap narrowing, its photocatalytic activity has been enhanced further by optimising valence and conductive band position and by minimising electron–hole recombination. These materials showed a 100% boost in visible light absorption along with nearly 50-times enhanced photocatalytic activity per specific surface area than standard TiO2 Degussa-P25, giving the best performance among the brookite-based photo-catalytically active materials and resulting among the TiO2 top-performers under visible light.

Graphical Abstract


Brookite Visible-light photocatalysis Titanium dioxide Heterogeneous catalysis Doping 



This work was supported by Italian Ministry of Education, University and Research (project TECLA; Grant Number PON03PE_00214_1). The authors would like to acknowledge Michelangelo Scopelliti (Palermo University) for XPS spectra measurement, Salvatore Cataldo (Palermo University) for TOC measurement, Gang Wang (Utrecht University) for the precious help in the set-up of photocatalytic experiments and Jochem Wijten (Utrecht University) for the fruitful discussion on electrochemistry and the settlement of the related measurements.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang Q, Huang Y, Xu LF, Cao JJ, Ho WK, Lee SC (2016) ACS Appl Mater Interfaces 8:4165CrossRefPubMedGoogle Scholar
  2. 2.
    Faraldos M, Kropp R, Anderson MA, Sobolev K (2016) Catal Today 259:228CrossRefGoogle Scholar
  3. 3.
    Banerjee S, Dionysiou DD, Pillai SC (2015) Appl Catal B 176:396CrossRefGoogle Scholar
  4. 4.
    Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) J Mater Chem 21:16304CrossRefGoogle Scholar
  5. 5.
    Zhang W, Jia B, Wang Q, Dionysiou D (2015) J Nanopart Res 17:1CrossRefGoogle Scholar
  6. 6.
    Romão J, Barata D, Ribeiro N, Habibovic P, Fernandes H, Mul G (2017) Environ Pollut 220:1199CrossRefPubMedGoogle Scholar
  7. 7.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefPubMedGoogle Scholar
  8. 8.
    Acar C, Dincer I, Naterer GF (2016) Int J Energy Res 40:1449CrossRefGoogle Scholar
  9. 9.
    Jafari T, Moharreri E, Amin AS, Miao R, Song W, Suib SL (2016) Molecules 21:900CrossRefGoogle Scholar
  10. 10.
    Ampelli C, Centi G, Passalacqua R, Perathoner S (2016) Catal Today 259:246CrossRefGoogle Scholar
  11. 11.
    Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Chem Soc Rev 45:3701CrossRefPubMedGoogle Scholar
  12. 12.
    Landmann M, Rauls E, Schmidt WG (2012) J Phys Condens Matter 24:195503CrossRefPubMedGoogle Scholar
  13. 13.
    Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Sci Rep 4:4043CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim W, Tachikawa T, Moon G-h, Majima T, Choi W (2014) Angew Chem Int Ed 53:14036CrossRefGoogle Scholar
  15. 15.
    Di Paola A, Bellardita M, Palmisano L (2013) Catalysts 3:36CrossRefGoogle Scholar
  16. 16.
    Banerjee S, Gopal J, Muraleedharan P, Tyagi K, Raj B (2006) Curr Sci 90:1378Google Scholar
  17. 17.
    Wunderlich W, Oekermann T, Miao L, Hue NT, Tanemura S, Tanemura M (2004) J Ceram Process Res 5:343Google Scholar
  18. 18.
    Shibata T, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K (2004) Phys Chem Chem Phys 6:1359CrossRefGoogle Scholar
  19. 19.
    Koelsch M, Cassaignon S, Guillemoles JF, Jolivet JP (2002) Thin Solid Films 403–404:312CrossRefGoogle Scholar
  20. 20.
    Štengl V, Králová D (2011) Mater Chem Phys 129:794CrossRefGoogle Scholar
  21. 21.
    Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:145605CrossRefPubMedGoogle Scholar
  22. 22.
    Mattsson A, Österlund L (2010) J Phys Chem C 114:14121CrossRefGoogle Scholar
  23. 23.
    López-Muñoz MJ, Revilla A, Alcalde G (2015) Catal Today 240:138CrossRefGoogle Scholar
  24. 24.
    Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A 216:179CrossRefGoogle Scholar
  25. 25.
    Lin H, Li L, Zhao M, Huang X, Chen X, Li G, Yu R (2012) J Am Chem Soc 134:8328CrossRefPubMedGoogle Scholar
  26. 26.
    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) J Photochem Photobiol C 25:1CrossRefGoogle Scholar
  27. 27.
    Fu C, Gong Y, Wu Y, Liu J, Zhang Z, Li C, Niu L (2016) Appl Surf Sci 379:83CrossRefGoogle Scholar
  28. 28.
    Tosoni S, Fernandez Hevia D, Gonzalez Diaz O, Illas F (2012) J Phys Chem Lett 3:2269CrossRefPubMedGoogle Scholar
  29. 29.
    Reddy PAK, Reddy PVL, Kim K-H, Kumar MK, Manvitha C, Shim J-J (2017) J Ind Eng Chem 53:253CrossRefGoogle Scholar
  30. 30.
    Pikuda O, Garlisi C, Scandura G, Palmisano G (2017) J Catal 346:109CrossRefGoogle Scholar
  31. 31.
    Ozer Y, Shin L, Felten Y, Oladipo A, Pikuda H, Muryn O, Casiraghi C, Palmisano C G (2017) J Environ Chem Eng 5:5091CrossRefGoogle Scholar
  32. 32.
    Lei XF, Zhang ZN, Wu ZX, Piao YJ, Chen C, Li X, Xue XX, Yang H (2017) Sep Purif Technol 174:66CrossRefGoogle Scholar
  33. 33.
    Tang X, Li D (2008) J Phys Chem C 112:5405CrossRefGoogle Scholar
  34. 34.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331CrossRefGoogle Scholar
  35. 35.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefPubMedGoogle Scholar
  36. 36.
    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A 265:115CrossRefGoogle Scholar
  37. 37.
    Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC (2013) ACS Appl Mater Interfaces 5:1663CrossRefPubMedGoogle Scholar
  38. 38.
    Feng H, Zhang M-H, Yu LE (2013) J Nanosci Nanotechnol 13:4981CrossRefPubMedGoogle Scholar
  39. 39.
    Yin S, Aita Y, Komatsu M, Wang J, Tang Q, Sato T (2005) J Mater Chem 15:674CrossRefGoogle Scholar
  40. 40.
    Hao H, Zhang J (2009) Microporous Mesoporous Mater 121:52CrossRefGoogle Scholar
  41. 41.
    El-Sheikh SM, Zhang G, El-Hosainy HM, Ismail AA, O’Shea KE, Falaras P, Kontos AG, Dionysiou DD (2014) J Hazard Mater 280:723CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang G, Zhang YC, Nadagouda M, Han C, O’Shea K, El-Sheikh SM, Ismail AA, Dionysiou DD (2014) Appl Catal B 144:614CrossRefGoogle Scholar
  43. 43.
    Mutuma BK, Shao GN, Kim WD, Kim HT (2015) J Colloid Interf Sci 442:1CrossRefGoogle Scholar
  44. 44.
    Beranek R (2011) Adv Phys Chem 2011:1CrossRefGoogle Scholar
  45. 45.
    Roy AM, De GC, Sasmal N, Bhattacharyya SS (1995) Int J Hydrog Energy 20:627CrossRefGoogle Scholar
  46. 46.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051CrossRefGoogle Scholar
  47. 47.
    Etacheri V, Seery MK, Hinder SJ, Pillai SC (2012) Inorg Chem 51:7164CrossRefPubMedGoogle Scholar
  48. 48.
    Wang P, Yap P-S, Lim T-T (2011) Appl Catal A 399:252CrossRefGoogle Scholar
  49. 49.
    Wang Y, Huang Y, Ho W, Zhang L, Zou Z, Lee S (2009) J Hazard Mater 169:77CrossRefPubMedGoogle Scholar
  50. 50.
    Gu DE, Lu Y, Yang BC, Hu YD (2008) Chem Commun 21:2453CrossRefGoogle Scholar
  51. 51.
    Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A, Forró L, Kiwi J, Pulgarin C (2009) Appl Catal B 88:398CrossRefGoogle Scholar
  52. 52.
    Wei F, Ni L, Cui P (2008) J Hazard Mater 156:135CrossRefPubMedGoogle Scholar
  53. 53.
    Wang X, Lim T-T (2010) Appl Catal B 100:355CrossRefGoogle Scholar
  54. 54.
    Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) J Phys Chem B 108:6004CrossRefGoogle Scholar
  55. 55.
    Sun H, Bai Y, Cheng Y, Jin W, Xu N (2006) Ind Eng Chem Res 45:4971CrossRefGoogle Scholar
  56. 56.
    Lee HU, Lee Y-C, Lee SC, Park SY, Son B, Lee JW, Lim C-H, Choi C-J, Choi M-H, Lee SY, Oh Y-K, Lee J (2014) Chem Eng J 254:268CrossRefGoogle Scholar
  57. 57.
    Fan D, Weirong Z, Zhongbiao W (2008) Nanotechnology 19:365607CrossRefGoogle Scholar
  58. 58.
    Chen X, Burda C (2004) J Phys Chem B 108:15446CrossRefGoogle Scholar
  59. 59.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349CrossRefGoogle Scholar
  60. 60.
    György E, Pérez del Pino A, Serra P, Morenza JL (2003) Surf Coat Technol 173:265CrossRefGoogle Scholar
  61. 61.
    Park J-Y, Lee C, Jung K-W, Jung D (2009) Bull Korean Chem Soc 30:402CrossRefGoogle Scholar
  62. 62.
    Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) J Mater Sci 47:7515CrossRefGoogle Scholar
  63. 63.
    Kramer B, Maschke K, Thomas P (1971) Phys Status Solidi B 48:635CrossRefGoogle Scholar
  64. 64.
    Banerjee S, Pillai SC, Falaras P, O’Shea KE, Byrne JA, Dionysiou DD (2014) J Phys Chem Lett 5:2543CrossRefPubMedGoogle Scholar
  65. 65.
    Li J-G, Tang C, Li D, Haneda H, Ishigaki T (2004) J Am Ceram Soc 87:1358CrossRefGoogle Scholar
  66. 66.
    Perego C, Wang Y-H, Durupthy O, Cassaignon S, Revel R, Jolivet J-P (2012) ACS Appl Mater Interfaces 4:752CrossRefPubMedGoogle Scholar
  67. 67.
    Sato T, Aita Y, Komatsu M, Yin S (2006) J Mater Sci 41:1433CrossRefGoogle Scholar
  68. 68.
    García-Valenzuela JA (2017) Comments Inorg Chem 37:99CrossRefGoogle Scholar
  69. 69.
    Li Z, Cong S, Xu Y (2014) ACS Catal 4:3273CrossRefGoogle Scholar
  70. 70.
    Ohtani B (2014) Electrochemistry 82:414CrossRefGoogle Scholar
  71. 71.
    Ohtani B (2014) Phys Chem Chem Phys 16:1788CrossRefPubMedGoogle Scholar
  72. 72.
    Henderson MA (2011) Surf Sci Rep 66:185CrossRefGoogle Scholar
  73. 73.
    Liu K-I, Su C-Y, Perng T-P (2015) RSC Adv 5:88367CrossRefGoogle Scholar
  74. 74.
    Zhao Y, Huang X, Tan X, Yu T, Li X, Yang L, Wang S (2016) Appl Surf Sci 365:209CrossRefGoogle Scholar
  75. 75.
    Rtimi S, Pulgarin C, Sanjines R, Kiwi J (2015) Appl Catal B 162:236CrossRefGoogle Scholar
  76. 76.
    Krumova K, Cosa G (2016) In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. The Royal Society of Chemistry, Cambridge, ch. 1CrossRefGoogle Scholar
  77. 77.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Appl Catal B 31:145CrossRefGoogle Scholar
  78. 78.
    Tomić N, Grujić-Brojčin M, Finčur N, Abramović B, Simović B, Krstić J, Matović B, Šćepanović M (2015) Mater Chem Phys 163:518CrossRefGoogle Scholar
  79. 79.
    Luo B, Li Z, Xu Y (2015) RSC Adv 5:105999CrossRefGoogle Scholar
  80. 80.
    Luís AM, Neves MC, Mendonça MH, Monteiro OC (2011) Mater Chem Phys 125:20CrossRefGoogle Scholar
  81. 81.
    Yang W, Wen Y, Zeng D, Wang Q, Chen R, Wang W, Shan B (2014) J Mater Chem A 2:20770CrossRefGoogle Scholar
  82. 82.
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CR, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Nat Mater 12:798CrossRefPubMedGoogle Scholar
  83. 83.
    Cataldo S, Sartorio C, Giannazzo F, Scandurra A, Pignataro B (2014) Nanoscale 6:3566CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Dipartimento di Fisica e ChimicaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations