Advertisement

Catalysis Letters

, Volume 148, Issue 9, pp 2839–2847 | Cite as

Effect of AO Segregation on Catalytical Activity of La0.7A0.3MnO3±δ (A = Ca, Sr, Ba) Regarding Oxygen Reduction Reaction

  • Natalia M. PorotnikovaEmail author
  • Vadim A. Eremin
  • Andrey S. Farlenkov
  • Edhem Kh. Kurumchin
  • Elena A. Sherstobitova
  • Dmitry I. Kochubey
  • Maxim V. Ananyev
Article

Abstract

Oxygen surface exchange kinetics of La0.7A0.3MnO3±δ has been studied by the isotope exchange method with gas phase equilibration using a static circulation experimental rig at the temperature of 850 °C and oxygen pressure of 1 kPa. Oxides of La0.7A0.3MnO3±δ with different dopant at one level of doping were considered. Rates of elementary acts of the oxygen exchange were found to change differently. So, the oxygen dissociative adsorption rate increased, the oxygen incorporation rate decreased, and the increase in the cation radius did not influence the interphase exchange rate. These trends are associated with the AO segregation processes at the surface and the appropriate mechanism of oxygen reduction is considered.

Graphical Abstract

The oxygen dissociative adsorption rate increased, the incorporation rate decreased, and the increase in the cation radius did not influence the interphase exchange rate. These trends are associated with the AO segregation processes at the surface.

Keywords

Catalysis Oxygen reduction reaction Kinetics Cation segregation Manganite 

Notes

Acknowledgements

The facilities of the shared access centers “Composition of Compounds” of IHTE UB RAS “Siberian Synchrotron and Terahertz Radiation Centre (SSTRC)” based on BINP SB RAS were used in this work. The work was done using Unique scientific setup “Isotopic exchange” of the Shared access center “Composition of Compounds”. The part of the work related to the measurements of spectra and the exposure of samples was performed using the infrastructure of the Shared-Use Center “Siberian Synchrotron and Terahertz Radiation Center (SSTRC)” based on VEPP-3/VEPP-4M/NovoFEL of BINP SB RAS. The isotope exchange study is supported by the grant of the Russian Science Foundation (Project Number 16-13-00053) and Scholarship of Russian President 2018–2020 СП-2316.2018.1 and President Grant МД-6758.2018.3. The educational activities of Ph.D. and master students involved into this work are supported by the Act 211 of the Government of the Russian Federation, Agreement No. 02.A03.21.0006.

References

  1. 1.
    Lee W, Han JW, Chen Y, Cai Zh, Yildiz B (2013) J Am Chem Soc 135:7909–7925CrossRefPubMedGoogle Scholar
  2. 2.
    Chen Y, Téllez H, Burriel M, Yang F, Tsvetkov N, Cai Zh, Mc Comb DW, Kilner JA, Yildiz B (2015) Chem Mater 27(15):5436–5450CrossRefGoogle Scholar
  3. 3.
    T´ellez H, Druce J, Kilner JA, Ishihara T (2015) Faraday Discuss 182:145–157CrossRefGoogle Scholar
  4. 4.
    Druce J, T´ellez H, Ishihara T, Kilner JA (2015) Faraday Discuss 182:271–288CrossRefPubMedGoogle Scholar
  5. 5.
    Fuilarton l IC, Jacobs J-P, van Benthem HE, Kilner JA, Brongersma HH, Scanlon PJ, B.C.H. Steele (1995) Ionics 1:51–58CrossRefGoogle Scholar
  6. 6.
    Kilner JA, Skinner SJ, Brongersma HH (2011) J Solid State Electrochem 1:861–876CrossRefGoogle Scholar
  7. 7.
    T´ellez H, Aguadero A, Druce J, Burriel M, Fearn S, Ishihara T, McPhaila DS, Kilner JA (2014) J Anal At Spectrom 29:1361–1370CrossRefGoogle Scholar
  8. 8.
    Druce J, Ishihara T, Kilner J (2014) Solid State Ion 262:893–896CrossRefGoogle Scholar
  9. 9.
    Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EKh (2016) Phys Chem Chem Phys 18:9102–9111CrossRefPubMedGoogle Scholar
  10. 10.
    Ananyev MV, Eremin VA, Tsvetkov DS, Porotnikova NM, Farlenkov AS, Zuev AYu, Fetisov AV, Kurumchin EKh (2017) Solid State Ion 304:96–106CrossRefGoogle Scholar
  11. 11.
    Li Ch, Pramana SS, Ni N, Kilner JA, Skinner SJ (2017) ACS Appl Mater Interfaces 9(35):29633–29642CrossRefPubMedGoogle Scholar
  12. 12.
    Porotnikova NM, Khodimchuk AV, Ananyev MV, Eremin VA, Tropin ES, Farlenkov AS, Pikalova EYu, Fetisov AV (2018) J Solid State Electrochem 22:2115–2126.  https://doi.org/10.1007/s10008-018-3919-x CrossRefGoogle Scholar
  13. 13.
    Tropin ES, Ananyev MV, Farlenkov AS, Khodimchuk AV, Berenov AV, Fetisov AV, Eremin VA, Kolchugin AA (2018) J Solid State Chem 262:199–213CrossRefGoogle Scholar
  14. 14.
    Wad UP, Ogale AS, Ogale SB, Venkatesan T (2002) Appl Phys Lett 81(18):3422–3424CrossRefGoogle Scholar
  15. 15.
    Jalili H, Han JW, Kuru Y, Cai Zh, Yildiz B (2011) J Phys Chem Lett 2:801–807CrossRefGoogle Scholar
  16. 16.
    Katsiev K, Yildiz B, Balasubramaniam K, Salvador PA (2009) Appl Phys Lett 95:092106CrossRefGoogle Scholar
  17. 17.
    Fister TT, Fong DD, Eastman JA, Baldo PM, Highland MJ, Fuoss PH, Balasubramaniam KR, Meador JC, Salvador PA (2008) Appl Phys Lett 93:151904CrossRefGoogle Scholar
  18. 18.
    Katsiev K, Yildiz B, Kavaipatti B, Salvador P (2009) ECS Trans 25(2):2309–2318Google Scholar
  19. 19.
    Huber A-K, Falk M, Rohnke M, Luerssen B, Amati M, Gregoratti L, Hesse D, Janek J (2012) J Catal 294:79–88CrossRefGoogle Scholar
  20. 20.
    Van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110(1):106–108CrossRefGoogle Scholar
  21. 21.
    Harrison WA (2010) Phys Rev B 81:045433CrossRefGoogle Scholar
  22. 22.
    Harrison WA (2011) Phys Rev B 83:155437CrossRefGoogle Scholar
  23. 23.
    Kuklja MM, Kotomin EA, Merkle R, Mastrikov YuA, Maier J (2013) Phys Chem Chem Phys 15:5443–5471CrossRefPubMedGoogle Scholar
  24. 24.
    Ananyev MV, Kh E. Kurumchin (2010) Russ J Phys Chem 84:1039–1044CrossRefGoogle Scholar
  25. 25.
    Kurumchin EKh, Anan’ev MV, Porotnikova NM, Eremin VA, Farlenkov AS (2014) RF Patent 144462Google Scholar
  26. 26.
    Bershitskaya NM, Ananyev MV, Kurumchin EKh, Gavrilyuk AL, Pankratov AA (2013) Russ J Electrochem 49(10):963–974CrossRefGoogle Scholar
  27. 27.
    Porotnikova NM, Anan’ev MV, Kurumchin EKh (2011) Russ J Electrochem 47(11):1250–1256CrossRefGoogle Scholar
  28. 28.
    Muzykantov VS, Panov GI, Boreskov GK (1973) Kinet Catal 14:948–951Google Scholar
  29. 29.
    Muzykantov VS, Panov GI (1970) Kinet Catal 13:350–357Google Scholar
  30. 30.
    Muzykantov VS, Boreskov GK, Panov GI (1974) React Kinet Catal Lett 1:315–319CrossRefGoogle Scholar
  31. 31.
    Otter MW, Boukamp BA, Bouwmeester HJM (2001) Solid State Ion 139:89–94CrossRefGoogle Scholar
  32. 32.
    Melo DMA, Borges FMM, Ambrosio RC, Pimentel PM, da Silva CN Jr., Melo MAF (2006) Chem Phys 322(3):477–484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natalia M. Porotnikova
    • 1
    • 2
    Email author
  • Vadim A. Eremin
    • 1
    • 2
  • Andrey S. Farlenkov
    • 1
    • 2
  • Edhem Kh. Kurumchin
    • 1
  • Elena A. Sherstobitova
    • 1
  • Dmitry I. Kochubey
    • 3
  • Maxim V. Ananyev
    • 1
    • 2
  1. 1.Institute of High Temperature ElectrochemistryYekaterinburgRussia
  2. 2.Ural Federal University named after the First President of Russia B.N. YeltsinYekaterinburgRussia
  3. 3.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations