Catalysis Letters

, Volume 148, Issue 8, pp 2391–2407 | Cite as

Influence of Tetraalkylammonium Compounds on Photocatalytic and Physical Properties of TiO2

  • Natalya SankovaEmail author
  • Viktoriya Semeykina
  • Dmitry Selishchev
  • Tatyana Glazneva
  • Ekaterina Parkhomchuk
  • Yurii Larichev
  • Nikolai Uvarov


A wide range of experimental data are reported for the first time on the TiO2 prepared by hydrolysis of highly concentrated Ti(OiPr)4 in water solutions of quaternary ammonium compounds (QACs). These TiO2 materials have been shown to be photocatalytically active under visible light irradiation (LED, 450 nm) using acetone as a model substrate oxidized in the gas phase. Five-fold increase in activity in comparison with the commercial photocatalyst KRONOClean 7000 is achieved. Colloidal solutions of hydrolyzed Ti(OiPr)4 have been studied by SAXS method suggesting the way in which QACs solutions may influence the final composition of TiO2. Phase composition, morphology, texture and surface properties of the modified TiO2 have been studied using XRD, BET, SEM and low-temperature FTIR with CO probe. The surface elemental composition has been investigated by XPS method. Additional low-energy levels and high concentration of acid surface sites originated from N/C-doping, are likely to be the main reasons for exceptional photocatalytic performance of these samples.

Graphical Abstract


Photocatalysis Catalysis, activity Elementary kinetics Sol–gel Preparation and materials 



This work was conducted within the framework of budget Project No. 0303-2016-0010 for Boreskov Institute of Catalysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10562_2018_2455_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 Photocatalytic activity data; Kubelka-Munk functions and Tauc plot analysis; BET isotherms of N2 adsorption and desorption; TEM images of TPA-TiO2 13 sample; small-angle scattering curves; DTA curves; XPS spectra and atomic ratios of elements in the near-surface layer; spectra, types of OH groups and their strength for KRONOclean 7000. (DOCX 3504 KB)


  1. 1.
    Pelaez M, Nolan NT, Pillai SC et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. CrossRefGoogle Scholar
  2. 2.
    Hernández-Ramírez A, Medina-Ramírez I (2015) Photocatalytic semiconductors. Synthesis, characterization, and environmental applications. Springer, New York. CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Jiang Z, Huang J et al (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510. CrossRefGoogle Scholar
  4. 4.
    Centi G, Passalacqua R, Perathoner S (2016) Advanced nanostructured titania photoactive materials for sustainable H2 production. Mater Sci Semicond Process 42:115–121CrossRefGoogle Scholar
  5. 5.
    Paz Y (2009) Photocatalytic treatment of air. From basic aspects to reactors. Adv Chem Eng 36:289–336. CrossRefGoogle Scholar
  6. 6.
    Verbruggen S, Tytgat T, Passel S et al (2014) Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air. Chem Pap. CrossRefGoogle Scholar
  7. 7.
    Zhong L, Haghighat F (2015) Photocatalytic air cleaners and materials technologies—abilities and limitations. Build Environ 91:191–203. CrossRefGoogle Scholar
  8. 8.
    Wen J, Li X, Liu W et al (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin J Catal 36:2049–2070. CrossRefGoogle Scholar
  9. 9.
    Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J Phys Chem C 118:231–242. CrossRefGoogle Scholar
  10. 10.
    Marschall R, Wang L (2014) Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal Today 225:111–135CrossRefGoogle Scholar
  11. 11.
    Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C 15:1–20. CrossRefGoogle Scholar
  12. 12.
    Spadavecchia F, Ceotto M, Presti L, Lo et al (2014) Second generation nitrogen doped titania nanoparticles: a comprehensive electronic and microstructural picture. Chin J Chem 32:1195–1213. CrossRefGoogle Scholar
  13. 13.
    Kisch H, Sakthivel S, Janczarek M, Mitoraj D (2007) A Low-Band gap, nitrogen-modified titania visible-light photocatalyst. J Phys Chem C 111:11445–11449. CrossRefGoogle Scholar
  14. 14.
    Mitoraj D, Kisch H (2008) The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed 47:9975–9978. CrossRefGoogle Scholar
  15. 15.
    Nishizawa K, Watanabe E, Maeda M (2010) A new preparation method of visible light responsive titanium dioxide photocatalytic films by ultraviolet irradiation. Mater Sci Forum 658:487–490CrossRefGoogle Scholar
  16. 16.
    Mercado C, Seeley Z, Bandyopadhyay A et al (2011) Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces 3:2281–2288. CrossRefPubMedGoogle Scholar
  17. 17.
    Etacheri V, Di Valentin C, Schneider J et al (2015) Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J Photochem Photobiol C 25:1–29. CrossRefGoogle Scholar
  18. 18.
    Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911. CrossRefGoogle Scholar
  19. 19.
    Taziwa R, Meyer E (2014) Carbon doped nano-crystalline TiO2 photo-active thin film for solid state photochemical solar cells. Adv Nanopart 3:54–63CrossRefGoogle Scholar
  20. 20.
    Liu C, Li Y, Xu P et al (2015) Controlled synthesis of ordered mesoporous TiO2-supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater Chem Phys 149:69–76. CrossRefGoogle Scholar
  21. 21.
    Chemseddine A, Moritz T (1999) Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur J Inorg Chem 1999:235–245.;2-N CrossRefGoogle Scholar
  22. 22.
    Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowers from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185. CrossRefGoogle Scholar
  23. 23.
    Chen W, Sun X, Weng D (2006) Morphology control of titanium oxides by tetramethylammonium cations in hydrothermal conditions. Mater Lett 60:3477–3480. CrossRefGoogle Scholar
  24. 24.
    Korovin E, Selishchev D, Besov A, Kozlov D (2015) UV-LED TiO2 photocatalytic oxidation of acetone vapor: effect of high frequency controlled periodic illumination. Appl Catal B 163:143–149. CrossRefGoogle Scholar
  25. 25.
    Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectros Relat Phenomena 8:129–137. CrossRefGoogle Scholar
  26. 26.
    Feigin A, Svergun DI (1989) Structure analysis by small-angle X-ray and neutron scattering. Acta Polym 40:224–224. CrossRefGoogle Scholar
  27. 27.
    Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286. CrossRefGoogle Scholar
  28. 28.
    Choi W, Ko JY, Park H, Chung JS (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal B 31:209–220. CrossRefGoogle Scholar
  29. 29.
    Coronado JM, Zorn ME, Tejedor-Tejedor I, Anderson MA (2003) Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor. Appl Catal B 43:329–344. CrossRefGoogle Scholar
  30. 30.
    Bianchi CL, Gatto S, Pirola C et al (2014) Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO2. Appl Catal B 146:123–130. CrossRefGoogle Scholar
  31. 31.
    El-Maazawi M, Finken AN, Nair AB, Grassian VH (2000) Adsorption and photocatalytic oxidation of acetone on TiO2: an in situ transmission FT-IR study. J Catal 191:138–146. CrossRefGoogle Scholar
  32. 32.
    Smirniotis PG, Boningari T, Damma D, Inturi SNR (2018) Single-step rapid aerosol synthesis of N-doped TiO2 for enhanced visible light photocatalytic activity. Catal Commun. CrossRefGoogle Scholar
  33. 33.
    Wang J, Tapio K, Habert A et al (2016) Influence of nitrogen doping on device operation for TiO2-based solid-state dye-sensitized solar cells: photo-physics from materials to devices. Nanomaterials 6:35. CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Loan TT, Long NN (2014) Optical properties of anatase and rutile TiO2:Cr3+ powders. J Sci 30:59–67Google Scholar
  35. 35.
    Luo X, Chen C, Yang J et al (2015) Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater. Int J Environ Res Public Health 12:14626–14639. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Navas J, Sánchez-Coronilla A, Aguilar T et al (2014) Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Phys Chem Chem Phys 16:3835–3845. CrossRefPubMedGoogle Scholar
  37. 37.
    Kete M, Pavlica E, Fresno F et al (2014) Highly active photocatalytic coatings prepared by a low-temperature method. Environ Sci Pollut Res 21:11238–11249. CrossRefGoogle Scholar
  38. 38.
    Tobaldi DM, Seabra MP, Otero-Irurueta G et al (2015) Quantitative XRD characterisation and gas-phase photocatalytic activity testing for visible-light (indoor applications) of KRONOClean 7000®. RSC Adv 5:102911–102918. CrossRefGoogle Scholar
  39. 39.
    López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7. CrossRefGoogle Scholar
  40. 40.
    Tryba B, Tygielska M, Colbeau-Justin C et al (2016) Influence of pH of sol-gel solution on phase composition and photocatalytic activity of TiO2 under UV and visible light. Mater Res Bull 84:152–161. CrossRefGoogle Scholar
  41. 41.
    Barborini E, Conti AM, Kholmanov I et al (2005) Nanostructured TiO2 films with 2 eV optical gaps. Adv Mater 17:1842–1846. CrossRefGoogle Scholar
  42. 42.
    Yang J, Mei S (2001) Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics. J Am Ceram Soc 702:1696–1702. CrossRefGoogle Scholar
  43. 43.
    Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2016) Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light. Environ Sci Pollut Res 23:3884–3896. CrossRefGoogle Scholar
  44. 44.
    Suzuki N, Sanada T, Terashima C et al (2017) Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris. J Appl Electrochem 47:197–203. CrossRefGoogle Scholar
  45. 45.
    Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180. CrossRefPubMedGoogle Scholar
  46. 46.
    Evgenia NYaT, Turevskaya EP, Vadim G, Kessler MIY (2002) The chemistry of metal alkoxides. J Organomet Chem. CrossRefGoogle Scholar
  47. 47.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. CrossRefPubMedGoogle Scholar
  48. 48.
    Simonsen ME, Søgaard EG (2010) Sol-gel reactions of titanium alkoxides and water: Influence of pH and alkoxy group on cluster formation and properties of the resulting products. J Sol-Gel Sci Technol 53:485–497. CrossRefGoogle Scholar
  49. 49.
    Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Titanium-oxo clusters, versatile nanobuilding blocks for the design of advanced hybrid materials. Monatshefte fur Chemie 137:501–528. CrossRefGoogle Scholar
  50. 50.
    Alphonse P, Varghese A, Tendero C (2010) Stable hydrosols for TiO2 coatings. J Sol-Gel Sci Technol 56:250–263. CrossRefGoogle Scholar
  51. 51.
    Briend M, Lamy A, Peltre MJ et al (1993) Thermal-stability of tetrapropylammonium (TPA) and tetramethylammonium (TMA) cations occluded in SAPO-37 molecular-sieves. Zeolites 13:201–211. doiCrossRefGoogle Scholar
  52. 52.
    So WW, Park SB, Kim KJ et al (2001) The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method. J Mater Sci 36:4299–4305. CrossRefGoogle Scholar
  53. 53.
    Sangchay W, Sikong L, Kooptarnond K (2012) Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Proced Eng 32:590–596. CrossRefGoogle Scholar
  54. 54.
    Chu D, Yuan X, Qin G et al (2008) Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. J Nanopart Res 10:357–363. CrossRefGoogle Scholar
  55. 55.
    Shard AG (2014) Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf Interface Anal 46:175–185. CrossRefGoogle Scholar
  56. 56.
    Lynch J, Giannini C, Cooper JK et al (2015) Substitutional or interstitial site selective nitrogen doping in TiO2 nanostructures. J Phys Chem C 119:7443–7452. CrossRefGoogle Scholar
  57. 57.
    Lee S, Cho IS, Lee DK et al (2010) Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. J Photochem Photobiol A 213:129–135. CrossRefGoogle Scholar
  58. 58.
    Erdem B, Hunsicker RA, Simmons GW et al (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669. CrossRefGoogle Scholar
  59. 59.
    Finetti P, Sedona F, Rizzi GA et al (2007) Core and valence band photoemission spectroscopy of well-ordered ultrathin TiOx films on Pt(111). J Phys Chem C 111:869–876. CrossRefGoogle Scholar
  60. 60.
    Hasegawa Y, Ayame A (2001) Investigation of oxidation states of titanium in titanium silicalite-1 by X-ray photoelectron spectroscopy. Catal. Today 71:177–187CrossRefGoogle Scholar
  61. 61.
    Bertóti I (2012) Nitrogen modified metal oxide surfaces. Catal Today 181:95–101. CrossRefGoogle Scholar
  62. 62.
    Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449. CrossRefGoogle Scholar
  63. 63.
    Peng F, Cai L, Huang L et al (2008) Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J Phys Chem Solids 69:1657–1664. CrossRefGoogle Scholar
  64. 64.
    Di Valentin C, Pacchioni G, Selloni A et al (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109:11414–11419. CrossRefPubMedGoogle Scholar
  65. 65.
    Meroni D, Lo Presti L, Di Liberto G et al (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study. J Phys Chem C 121:430–440. CrossRefGoogle Scholar
  66. 66.
    Dong F, Zhao W, Wu Z (2008) Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology. CrossRefPubMedGoogle Scholar
  67. 67.
    Liu J, Zhang Q, Yang J et al (2014) Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem Commun 50:13971–13974. CrossRefGoogle Scholar
  68. 68.
    Palanivelu K, Im J, Lee Y (2007) Carbon doping of TiO2 for visible light photo catalysis-a review. Carbon Sci 8:214–224. CrossRefGoogle Scholar
  69. 69.
    Tijani JO, Fatoba OO, Totito TC et al (2017) Synthesis and characterization of carbon doped TiO2 photo-catalysts supported on stainless steel mesh by sol-gel method. Carbon Lett 22:48–59 CrossRefGoogle Scholar
  70. 70.
    Baraton M-I (1996) FT-IR surface study of nanosized ceramic materials used as gas sensors. Sens Actuators B 31:33–38. CrossRefGoogle Scholar
  71. 71.
    Lustemberg PG, Scherlis DA (2013) Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy. J Chem Phys. CrossRefPubMedGoogle Scholar
  72. 72.
    Hadjiivanov K, Lamotte J, Lavalley J (1997) FTIR study of low-temperature CO adsorption on pure and ammonia-precovered TiO2 (anatase). Society 2:3374–3381Google Scholar
  73. 73.
    Martra G (2000) Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Appl Catal A 200:275–285. CrossRefGoogle Scholar
  74. 74.
    Bolis V, Fubini B, Garrone E, Morterra C (1989) Thermodynamic and vibrational characterization of CO adsorption on variously pretreated anatase. J Chem Soc Faraday Trans 1 85:1383–1395. CrossRefGoogle Scholar
  75. 75.
    Paukshtis EA, Soltanov RI, Yurchenko EN (1981) Determination of the strength of aprotic acidic centers on catalyst surfaces from the IR spectra of adsorbed carbon monoxide. React Kinet Catal Lett 16:93–96CrossRefGoogle Scholar
  76. 76.
    Deiana C, Tabacchi G, Maurino V et al (2013) Surface features of TiO2 nanoparticles: combination modes of adsorbed CO probe the stepping of (101) facets. Phys Chem Chem Phys 15:13391. CrossRefPubMedGoogle Scholar
  77. 77.
    Sun B, Smirniotis PG, Boolchand P (2005) Visible light photocatalysis with platinized rutile TiO2 for aqueous organic oxidation. Langmuir 21:11397–11403. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Natalya Sankova
    • 1
    • 2
    Email author
  • Viktoriya Semeykina
    • 1
    • 2
  • Dmitry Selishchev
    • 1
    • 2
  • Tatyana Glazneva
    • 1
    • 2
  • Ekaterina Parkhomchuk
    • 1
    • 2
  • Yurii Larichev
    • 1
    • 2
  • Nikolai Uvarov
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and MechanochemistryNovosibirskRussia

Personalised recommendations