Advertisement

Catalysis Letters

, Volume 148, Issue 8, pp 2537–2547 | Cite as

Structural Dynamics of Dispersed Titania During Dehydration and Oxidative Dehydrogenation Studied by In Situ UV Raman Spectroscopy

  • Philipp Waleska
  • Christian Hess
Article
  • 67 Downloads

Abstract

The structural dynamics of dispersed titania, i.e., silica supported titania, is investigated during dehydration and oxidative dehydrogenation (ODH) of ethanol using optical spectroscopy. UV Raman spectroscopy enabling resonance enhancements proves to be a valuable tool to identify Ti–OH, Ti–O–Si, and Ti–O–Ti groups. Upon dehydration, a transformation of Ti–OH into Ti–O–Si and Ti–O–Ti groups is observed. Two types of Ti–OH vibrations (isolated, geminal) are identified at around 700 and 800 cm− 1 in agreement with theoretical models. Dispersed titania is catalytically active in ethanol ODH with a performance comparable to dispersed vanadia. In situ UV Raman spectra reveal a consumption of Ti–O–Ti, Ti–O–Si, and Ti–OH groups during ethanol adsorption to the titania surface. The presented results are consistent with an ODH reaction mechanism involving a structural transformation of oligomerized or closely neighbored monomeric TiOX structures. The relevance of the proposed mechanism is discussed in the context of other supported transition metal oxide catalysts.

Graphical Abstract

Keywords

Titania UV Raman spectroscopy Oxidative dehydrogenation (ODH) In situ Structural dynamics 

Notes

Acknowledgements

The authors would like to thank Severine Rupp and Patrick Ober for help with some of the Raman and UV–Vis experiments. Karl Kopp is acknowledged for technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Gao XT, Bare SR, Fierro JLG, Banares MA, Wachs IE (1998) J Phys Chem B 102:5653CrossRefGoogle Scholar
  2. 2.
    Sannino D, Vaiano V, Ciambelli P, Carotenuto G, Di Serio M, Santacesaria E (2013) Catal Today 209:159CrossRefGoogle Scholar
  3. 3.
    Tian F, Zhang YP, Zhang J, Pan CX (2012) J Phys Chem C 116:7515CrossRefGoogle Scholar
  4. 4.
    Dilla M, Schlögl R, Strunk J (2017) ChemCatChem 9:696CrossRefGoogle Scholar
  5. 5.
    Hamilton N, Wolfram T, Müller GT, Hävecker M, Kröhnert J, Carrero C, Schomäcker R, Trunschke A, Schlögl R (2012) Catal Sci Technol 2:1346CrossRefGoogle Scholar
  6. 6.
    Carrero C, Kauer M, Dinse A, Wolfram T, Hamilton N, Trunschke A, Schlögl R, Schomäcker R (2014) Catal Sci Technol 4:786CrossRefGoogle Scholar
  7. 7.
    Hess C, Waleska P, Ratzka M, Janssens TVW, Rasmussen SB, Beato P (2017) Top Catal 60:1631CrossRefGoogle Scholar
  8. 8.
    Andrushkevich TV, Kaichev VV, Chesalov YA, Saraev AA, Buktiyarov VI (2017) Catal Today 279:95CrossRefGoogle Scholar
  9. 9.
    Jørgensen B, Kristensen SB, Kunov-Kruse AJ, Fehrmann R, Christensen CH, Riisager A (2009) Top Catal 52:253CrossRefGoogle Scholar
  10. 10.
    Wachs IE, Deo G, Weckhuysen BM, Andreini A, Vuurman MA, deBoer M, Amiridis MD (1996) J Catal 161:211CrossRefGoogle Scholar
  11. 11.
    Segura Y, Chmielarz L, Kustrowski P, Cool P, Dziembaj R, Vansant EF (2005) Appl Catal B 61:69CrossRefGoogle Scholar
  12. 12.
    Kwak JH, Herrera JE, Hu JZ, Wang Y, Peden CHF (2006) Appl Catal A 300:109CrossRefGoogle Scholar
  13. 13.
    Quaranta NE, Soria J, Corberán VC, Fierro JLG (1997) J Catal 171:1CrossRefGoogle Scholar
  14. 14.
    Beck B, Harth M, Hamilton NG et al (2012) J Catal 296:120CrossRefGoogle Scholar
  15. 15.
    Dinse A, Ozarowski A, Hess C, Schomäcker R, Dinse KP (2008) J Phys Chem C 112:17664CrossRefGoogle Scholar
  16. 16.
    Nitsche D, Hess C (2014) Chem Phys Lett 616:115CrossRefGoogle Scholar
  17. 17.
    Nitsche D, Hess C (2016) J Phys Chem C 120:1025CrossRefGoogle Scholar
  18. 18.
    Yang QH, Wang SL, Lu JQ, Xiong G, Feng ZC, Xin Q, Li C (2000) Appl Catal A 194:507CrossRefGoogle Scholar
  19. 19.
    Zhang L, Abbenhuis HCL, Gerritsen G, Ni Bhriain N, Magusin PCMM., Mezari B, Han W, van Santen RA, Yang QH, Li C (2007) Chem Eur J 13:1210CrossRefGoogle Scholar
  20. 20.
    Zhang WH, Lu JQ, Han B, Li MJ, Xiu JH, Ying PL, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  21. 21.
    Strunk J, Vining WC, Bell AT (2010) J Phys Chem C 114:16937CrossRefGoogle Scholar
  22. 22.
    Ruff P, Lauterbach S, Kleebe HJ, Hess C (2016) Microp Mesop Mater 235:160CrossRefGoogle Scholar
  23. 23.
    Nitsche D, Hess C (2013) J Raman Spectrosc 44:1733CrossRefGoogle Scholar
  24. 24.
    Waleska PS, Hess C (2016) J Phys Chem C 120:18510CrossRefGoogle Scholar
  25. 25.
    Waleska PS, Rupp S, Hess C (2018) J Phys Chem C 122:3386CrossRefGoogle Scholar
  26. 26.
    Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) J Catal 203:82CrossRefGoogle Scholar
  27. 27.
    Hardcastle FD, Ishihara H, Sharma R, Biris AS (2011) J Mater Chem 21:6337CrossRefGoogle Scholar
  28. 28.
    Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321CrossRefGoogle Scholar
  29. 29.
    Zhang J, Xu Q, Li MJ, Feng ZC, Li C (2009) J Phys Chem C 113:1698CrossRefGoogle Scholar
  30. 30.
    Balachandran U, Eror NG (1982) J Solid State Chem 42:276CrossRefGoogle Scholar
  31. 31.
    Porto SPS, Fleury PA, Damen TC (1967) Phys Rev 154:522CrossRefGoogle Scholar
  32. 32.
    Klein S, Weckhuysen BM, Martens JA, Maier WF, Jacobs PA (1996) J Catal 163:489CrossRefGoogle Scholar
  33. 33.
    On DT, LeNoc L, Bonneviot L (1996) Chem Commun.  https://doi.org/10.1039/CC9960000299 Google Scholar
  34. 34.
    Klokishner S, Reu O, Tzolova-Müller G, Schlögl R, Trunschke A (2014) J Phys Chem C 118:14677CrossRefGoogle Scholar
  35. 35.
    Sekiya T, Yagisawa T, Kamiya N, Das Mulmi D, Kurita S, Murakami Y, Kodaira T (2004) J Phys Soc Jpn 73:703CrossRefGoogle Scholar
  36. 36.
    Finnie KS, Luca V, Moran PD, Bartlett JR, Woolfrey JL (2000) J Mater Chem 10:409CrossRefGoogle Scholar
  37. 37.
    Moran PD, Bowmaker GA, Cooney RP, Finnie KS, Bartlett JR, Woolfrey JL (1998) Inorg Chem 37:2741CrossRefGoogle Scholar
  38. 38.
    Björklund S, Kocherbitov V (2017) Sci Rep 7:9960CrossRefGoogle Scholar
  39. 39.
    Vuurman MA, Wachs IE (1992) J Phys Chem 96:5008CrossRefGoogle Scholar
  40. 40.
    Li C (2003) J Catal 216:203CrossRefGoogle Scholar
  41. 41.
    Sänze S, Gurlo A, Hess C (2013) Angew Chem Int Ed 52:3607CrossRefGoogle Scholar
  42. 42.
    Jehng JM, Hu HC, Gao XT, Wachs IE (1996) Catal Today 28:335CrossRefGoogle Scholar
  43. 43.
    Housecroft CE, Sharpe AG (2012) Inorganic chemistry, Pearson, HarlowGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eduard-Zintl-Institut für Anorganische und Physikalische ChemieTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations