Advertisement

Catalysis Letters

, Volume 148, Issue 8, pp 2548–2560 | Cite as

Hydrodearomatization of Model Monoaromatics Over Ni/Al2O3: Theoretical and Experimental Approaches

  • Julien Deligny
  • Laurent Germanaud
  • Jean-Pierre Dath
  • Sylvette Brunet
Article
  • 29 Downloads

Abstract

Liquid phase hydrodearomatization (HDA) of monoaromatic model molecules (toluene, indane, tetralin, cyclohexylbenzene, nonylbenzene) from naphtha and middle distillate was conducted at a temperature of 170 °C and a pressure of 100 bar over Ni/Al2O3 in order to compare their reactivity separately and in mixture. A reactivity scale was established where toluene is more reactive than tetralin, indane, cyclohexylbenzene and nonylbenzene. The difference of reactivity is due to steric hindrance of the substituent and its electronic effect. In all cases, the fully hydrogenated product is the main product. Toluene hydrodearomatization is inhibited by the presence of another monoaromatics. This inhibition effect is more significant with indane than with cyclohexylbenzene and nonylbenzene and tetralin corresponding to competitive adsorptions and highlighted by kinetic modeling.

Graphical Abstract

Keywords

Hydrodearomatization Monoaromatics hydrogenation Solvent Ni/Al2O3 Kinetic Modeling 

Notes

Acknowledgements

J. Deligny acknowledges Total and ANRT for a PhD grant and Johnson Mathey for the catalyst.

References

  1. 1.
    Cooper BH, Donnis BBL (1996) Appl Catal A 137:203–223CrossRefGoogle Scholar
  2. 2.
    Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2012–2058CrossRefGoogle Scholar
  3. 3.
    Dath J-P, Minoux D, Chassard O (2016) WO/2016/001302, TotalGoogle Scholar
  4. 4.
    Altgelt KH, Boduszynski MM (1993) Composition and analysis of heavy petroleum fractions. CRC Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Jennerwein M, Eschner M, Gröger T, Wilharm T, Zimmermann R (2014) Energy Fuels 28:5670–5681CrossRefGoogle Scholar
  6. 6.
    Adam F, Bertoncini F, Coupard V, Charon N, Thiébaut D, Espinat D, Hennion M-C (2008) J Chromatogr A 1186:236–244CrossRefGoogle Scholar
  7. 7.
    Chowhudry R, Pedernera E, Reimert R (2002) AIChE J 48:126–135CrossRefGoogle Scholar
  8. 8.
    Stanislaus A, Cooper BH (1994) Catal Rev Sci Eng 36:75–123CrossRefGoogle Scholar
  9. 9.
    Korre SC, Klein MT, Quann RJ (1995) Ind Eng Chem Res 34:101–117CrossRefGoogle Scholar
  10. 10.
    Beltramone AR, Resasco DE, Alvarez WE, Choudhary TV (2008) Ind Eng Chem Res 47:7161–7166CrossRefGoogle Scholar
  11. 11.
    Sapre AV, Gates BC (1981) Ind Eng Chem Proc Des Dev 20:68–73CrossRefGoogle Scholar
  12. 12.
    Kishore Kumar SA, John M, Pai SM, Niwate Y, Newalkar BL (2014) Fuel Process Technol 128:303–309CrossRefGoogle Scholar
  13. 13.
    Castaño P, van Herk D, Kreutzer MT, Moulijn JA, Makkee M (2009) Appl Catal B 88:213–223CrossRefGoogle Scholar
  14. 14.
    Aubert C, Durand R, Geneste P, Moreau C (1988) J Catal 112:12–20CrossRefGoogle Scholar
  15. 15.
    Xin L, Liu X, Chen X, Feng X, Liu Y, Yang C (2017) Energy Fuels 31:6968–6976CrossRefGoogle Scholar
  16. 16.
    Tailleur RG (2006) Fuel Process Technol 87:759–767CrossRefGoogle Scholar
  17. 17.
    Weitkamp AW (1968) Adv Catal 18:1–110Google Scholar
  18. 18.
    Korre SC, Neurock M, Klein MT, Quann RJ (1994) Chem Eng Sci 49:4191–4210CrossRefGoogle Scholar
  19. 19.
    Jongpatiwut S, Li Z, Resasco DE, Alvarez WE, Sughrue EL, Dodwell GW (2004) Appl Catal A 262:241–253CrossRefGoogle Scholar
  20. 20.
    Chou P, Vannice MA (1987) J Catal 107:129–139CrossRefGoogle Scholar
  21. 21.
    Vasiur Bahaman M, Vannice MA (1991) J Catal 127:251–266CrossRefGoogle Scholar
  22. 22.
    Keane MA (1997) J Catal 166:347–355CrossRefGoogle Scholar
  23. 23.
    Bera T, Thybaut JW, Marin GB (2012) ACS Catal 2:1305–1318CrossRefGoogle Scholar
  24. 24.
    Huang T-C, Kang B-C (1995) Ind Eng Chem Res 34:1140–1148CrossRefGoogle Scholar
  25. 25.
    Rautanen PA, Lylykangas MS, Aittamaa JR, Krause AOI (2001) Stud Surf Sci Catal 133:309–316CrossRefGoogle Scholar
  26. 26.
    Rautanen PA, Lylykangas MS, Aittamaa JR, Krause AOI (2002) Ind Eng Chem Res 41:5966–5975CrossRefGoogle Scholar
  27. 27.
    Frye CG, Weitkamp W (1969) J Chem Eng Data 14:372–376CrossRefGoogle Scholar
  28. 28.
    Rautanen PA, Aittamaa JR, Krause AOI (2001) Chem Eng Sci 56:1247–1254CrossRefGoogle Scholar
  29. 29.
    Singh UK, Vannice MA (1999) AIChE J 45:1059–1071CrossRefGoogle Scholar
  30. 30.
    Rautanen PA, Aittamaa JR, Krause AOI (2000) Ind Eng Chem Res 39:4032–4039CrossRefGoogle Scholar
  31. 31.
    Jaffe SB (1974) Ind Eng Chem Proc Des Dev 13:34–39CrossRefGoogle Scholar
  32. 32.
    Ferraz SGA, Santos BM, Zotin FM, Araujo LRR, Zotin J (2015) Ind Eng Chem Res 54:2646–2656CrossRefGoogle Scholar
  33. 33.
    Liu H, Liu C, Yin C, Liu B, Li X, Li Y, Chai Y, Liu Y (2016) Catal Today 276:46–54CrossRefGoogle Scholar
  34. 34.
    Romero CMC, Thybaut JW, Marin GB (2008) Catal Today 130:231–242CrossRefGoogle Scholar
  35. 35.
    Suppino RS, Landers R, Cobo AJG (2016) Appl Catal A 525:41–49CrossRefGoogle Scholar
  36. 36.
    Ledesma BC, Vallés VA, Rivoira LP, Martinez ML, Anunziata OA, Beltramone AR (2014) Catal Lett 144:783–795CrossRefGoogle Scholar
  37. 37.
    Toppinen S, Rantakylä TK, Salmi T, Aittamaa JR (1996) Ind Eng Chem Res 35:1824–1833CrossRefGoogle Scholar
  38. 38.
    Lylykangas MS, Rautanen PA, Krause AOI (2002) Ind Eng Chem Res 41:5632–5639CrossRefGoogle Scholar
  39. 39.
    Rahaman MV, Vannice MA (1991) J Catal 127:251–266CrossRefGoogle Scholar
  40. 40.
    Völter J, Hermann M, Heise K (1968) J Catal 12:307–313CrossRefGoogle Scholar
  41. 41.
    Dufresne P, Bigeard PH, Billon A (1987) Catal Today 1:367–384CrossRefGoogle Scholar
  42. 42.
    Toppinen S, Rantakylä TK, Salmi T, Aittamaa JR (1996) Ind Eng Chem Res 35:4424–4433CrossRefGoogle Scholar
  43. 43.
    Poondi D, Vannice MA (1996) J Catal 161:742–751CrossRefGoogle Scholar
  44. 44.
    Rader CP, Smith HA (1962) J Am Chem Soc 84:1443–1449CrossRefGoogle Scholar
  45. 45.
    Toppinen S, Salmi T, Rantakylä TK, Aittamaa JR (1997) Ind Eng Chem Res 36:2101–2109CrossRefGoogle Scholar
  46. 46.
    Abon M, Bertolini JC, Billy J, Massardier J, Tardy B (1985) Surf Sci 162:395–401CrossRefGoogle Scholar
  47. 47.
    Kieboom APG (1976) Bull Chem Soc Jpn 49:331–332CrossRefGoogle Scholar
  48. 48.
    Keane MA, Patterson PM (1999) Ind Eng Chem Res 38:1295–1305CrossRefGoogle Scholar
  49. 49.
    Fonseca GS, Silveira ET, Gelesky MA (2005) J Dupont Adv Synth Catal 347:847–853CrossRefGoogle Scholar
  50. 50.
    Dokjampa S, Rirksomboon T, Osuwan S, Jongpatiwut S, Resasco DE (2007) Catal Today 123:218–223CrossRefGoogle Scholar
  51. 51.
    Monteiro-Gezork ACA, Natividad R, Winterbottom JM (2008) Catal Today 130:471–485CrossRefGoogle Scholar
  52. 52.
    Oh SH, Fisher GB, Carpenter JE, Goodman DW (1986) J Catal 100:360–376CrossRefGoogle Scholar
  53. 53.
    Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Appl Catal A 470:31–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julien Deligny
    • 1
  • Laurent Germanaud
    • 2
  • Jean-Pierre Dath
    • 3
  • Sylvette Brunet
    • 1
  1. 1.Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR 7285 CNRSPoitiers Cedex 9France
  2. 2.Total Marketing ServicesCentre de Recherche de SolaizeSolaizeFrance
  3. 3.Total Research & Technology FeluySeneffeBelgium

Personalised recommendations