Catalysis Letters

, Volume 148, Issue 7, pp 1785–1802 | Cite as

Extracting Chemical Information from XPS Spectra: A Perspective

  • Paul S. BagusEmail author
  • Eugene Ilton
  • Connie J. Nelin


Important mechanisms that lead to features, often complex, in X-ray photoelectron spectroscopy (XPS) spectra are defined and described. It is shown that there is much information in an XPS spectrum that can be obtained by examining these features rather than examining only the shifts of main peaks between different materials. These mechanisms are presented with a focus on describing the underlying chemical and physical phenomena responsible for features of the XPS and on showing how these XPS features can be related to the properties and electronic structure of the material studied. While it is necessary to consider certain quantum mechanical rules, the mathematical formalism is not discussed. However, a general awareness of multiplet splittings, which are a result of angular momentum coupling combined with ligand field and spin–orbit splittings, and of covalent mixings in the metal–ligand bond of oxides is essential to properly interpret the significance of XPS features. A conceptual framework of shake excitation from bonding to anti-bonding orbitals is introduced to provide an understanding of the significance of XPS satellites. While the coupling of theory and measurement is required to extract quantitative information from XPS, it may be possible to obtain useful qualitative information directly from features of the XPS spectra provided that one takes into account more than only shifts of the XPS binding energies.

Graphical Abstract

A correct analysis of XPS features may require a careful treatment of many-body effects that distribute intensity over many individual, unresolved final states.


XPS Electronic structure Multiplets Ligand field splittings 



This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division through the Geosciences program at Pacific Northwest National Laboratory.


  1. 1.
    Siegbahn K, Nordling C, Fahlman A, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergmark T, Karlsson SE, Lindgren I, Lindberg B (1967) ESCA-atomic, molecular, and solid state structure studied by means of electron spectroscopy. Almqvist and Wiksells, UppsalaGoogle Scholar
  2. 2.
    Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA-applied to free molecules. North-Holland, AmsterdamGoogle Scholar
  3. 3.
    Fadley CS, Brundle CR, Baker AD, (1978) Electron spectroscopy: theory, techniques and applications, vol 2, Academic Press, New York, p 2Google Scholar
  4. 4.
    Barr TL (1994) The principles and practice of X-ray photoelectron spectroscopy. Taylor and Francis, LondonGoogle Scholar
  5. 5.
    Bagus PS, Ilton ES, Nelin CJ (2013) Surf Sci Rep 68:273CrossRefGoogle Scholar
  6. 6.
    Freund HJ (1995) Phys Status Solidi (b) 192:407CrossRefGoogle Scholar
  7. 7.
    Freund H-J, Pacchioni G (2008) Chem Soc Rev 37:2224CrossRefPubMedGoogle Scholar
  8. 8.
    Henry CR (1998) Surf Sci Rep 31:231CrossRefGoogle Scholar
  9. 9.
    Netzer F, Fortunelli A (2016) Oxide materials at the two-dimensional limit. Springer, ChamCrossRefGoogle Scholar
  10. 10.
    Barr TL, Ying Li L (1989) J Phys Chem Solids 50:657CrossRefGoogle Scholar
  11. 11.
    van Setten MJ, Costa R, Viñes F, Illas F (2018) J Chem Theory Comput 14:877CrossRefPubMedGoogle Scholar
  12. 12.
    Pueyo Bellafont N, Bagus PS, Illas F (2015) J Chem Phys 142:214102CrossRefPubMedGoogle Scholar
  13. 13.
    Pueyo Bellafont N, Viñes F, Illas F (2016) J Chem Theory Comput 12:324CrossRefPubMedGoogle Scholar
  14. 14.
    Slater JC (1960) Quantum theory of atomic structure. vols I, II. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Bagus PS, Nelin CJ (2014) J Electron Spectrosc Relat Phenom 194:37CrossRefGoogle Scholar
  16. 16.
    Bagus PS, Nelin CJ, Hrovat DA, Ilton ES (2017) J Chem Phys 146:134706CrossRefPubMedGoogle Scholar
  17. 17.
    Bagus P, Brundle CR, Nelin CJ J Chem Phys (to be submitted)Google Scholar
  18. 18.
    Bagus PS, Pacchioni G, Parmigiani F (1991) Phys Rev B 43:5172CrossRefGoogle Scholar
  19. 19.
    Ilton ES, Bagus PS (2011) Surf Interface Anal 43:1549CrossRefGoogle Scholar
  20. 20.
    Sangaletti L, Parmigiani F, Bagus PS (2002) Phys Rev B 66:115106CrossRefGoogle Scholar
  21. 21.
    Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307CrossRefGoogle Scholar
  22. 22.
    Mullins DR, Radulovic PV, Overbury SH (1999) Surf Sci 429:186CrossRefGoogle Scholar
  23. 23.
    Aberg T (1967) Phys Rev 156:35CrossRefGoogle Scholar
  24. 24.
    Manne R, Åberg T (1970) Chem Phys Lett 7:282CrossRefGoogle Scholar
  25. 25.
    Okada K, Kotani A, Thole BT (1992) J Electron Spectrosc Relat Phenom 58:325CrossRefGoogle Scholar
  26. 26.
    Okada K, Kotani A (1992) J Phys Soc Jpn 61:4619CrossRefGoogle Scholar
  27. 27.
    de Groot FMF (1994) J Electron Spectrosc Relat Phenom 67:529CrossRefGoogle Scholar
  28. 28.
    Jolly WL (1972) In: Shirley DA, Proceedings of the international conference on electron spectroscopy, North-Holland Amsterdam, Netherlands, p 629Google Scholar
  29. 29.
    Koepke JW, Jolly WL (1976) J Electron Spectrosc Relat Phenom 9:413CrossRefGoogle Scholar
  30. 30.
    Iwan M, Kunz C (1977) Phys Lett A 60A:345CrossRefGoogle Scholar
  31. 31.
    Citrin PH, Eisenberger P, Hamann DR (1974) Phys Rev Lett 33:965CrossRefGoogle Scholar
  32. 32.
    Cederbaum LS, Domcke W (1976) J Chem Phys 64:603CrossRefGoogle Scholar
  33. 33.
    Steinruck HP, Fuhrmann T, Papp C, Trankenschuh B, Denecke R (2006) J Chem Phys 125Google Scholar
  34. 34.
    Seah MP (1999) Surf Sci 420:285CrossRefGoogle Scholar
  35. 35.
    Seah MP, Gilmore IS, Spencer SJ (2000) Surf Sci 461:1CrossRefGoogle Scholar
  36. 36.
    Shirley DA (1972) Phys Rev B 5:4709CrossRefGoogle Scholar
  37. 37.
    Gupta RP, Sen SK (1974) Phys Rev B 10:71CrossRefGoogle Scholar
  38. 38.
    Gupta RP, Sen SK (1975) Phys Rev B 12:15CrossRefGoogle Scholar
  39. 39.
    Bagus PS, Broer R, de Jong WA, Nieuwpoort WC, Parmigiani F, Sangaletti L (2000) Phys Rev Lett 84:2259CrossRefPubMedGoogle Scholar
  40. 40.
    Bagus PS, Ilton ES (2006) Phys Rev B 73:155110CrossRefGoogle Scholar
  41. 41.
    Bagus PS, Mallow JV (1994) Chem Phys Lett 228:695CrossRefGoogle Scholar
  42. 42.
    Bagus PS, Nelin CJ, Sassi M, Ilton ES, Rosso KM (2018) Phys Chem Chem Phys 20:4396CrossRefPubMedGoogle Scholar
  43. 43.
    Visscher L, Visser O, Aerts PJC, Merenga H, Nieuwpoort WC (1994) Comput Phys Commun 81:120CrossRefGoogle Scholar
  44. 44.
    Bagus PS, Illas F, Casanovas J, JimenezMateos JM (1997) J Electron Spectrosc Relat Phenom 83:151CrossRefGoogle Scholar
  45. 45.
    Bagus PS, Illas F (1992) J Chem Phys 96:8962CrossRefGoogle Scholar
  46. 46.
    Bagus PS, Illas F, Casanovas J (1997) Chem Phys Lett 272:168CrossRefGoogle Scholar
  47. 47.
    Bagus PS, Sousa C, Illas F (2016) J Chem Phys 145:144303CrossRefPubMedGoogle Scholar
  48. 48.
    Zakrzewski VG, Ortiz JV, Nichols JA, Heryadi D, Yeager DL, Golab JT (1996) Int J Quantum Chem 60:29CrossRefGoogle Scholar
  49. 49.
    Ortiz JV (2013) Wiley Interdiscip Rev Comput Mol Sci 3:123CrossRefGoogle Scholar
  50. 50.
    Mulliken RS (1949) J Chim Phys 46:497CrossRefGoogle Scholar
  51. 51.
    Bagus PS, Schaefer HF (1971) J Chem Phys 55:1474CrossRefGoogle Scholar
  52. 52.
    Cox PA (1975) Mol Phys 30:389CrossRefGoogle Scholar
  53. 53.
    Nelin CJ, Bagus PS, Brown MA, Sterrer M, Freund H-J (2011) Angew Chem Int Ed 50:10174CrossRefGoogle Scholar
  54. 54.
    Hohlneicher G, Pulm H, Freund HJ (1985) J Electron Spectrosc Relat Phenom 37:209CrossRefGoogle Scholar
  55. 55.
    Richter B, Kuhlenbeck H, Freund HJ, Bagus PS (2004) Phys Rev Lett 93:026805CrossRefPubMedGoogle Scholar
  56. 56.
    Bagus PS, Wieckowski A, Freund HJ (2006) Chem Phys Lett 420:42CrossRefGoogle Scholar
  57. 57.
    Kaden WE, Büchner C, Lichtenstein L, Stuckenholz S, Ringleb F, Heyde M, Sterrer M, Freund H-J, Giordano L, Pacchioni G, Nelin CJ, Bagus PS (2014) Phys Rev B 89:115436CrossRefGoogle Scholar
  58. 58.
    de Groot F (2001) Chem Rev 101:1779CrossRefPubMedGoogle Scholar
  59. 59.
    de Groot FMF, Glatzel P, Bergmann U, van Aken PA, Barrea RA, Klemme S, Hävecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) J Phys Chem B 109:20751CrossRefPubMedGoogle Scholar
  60. 60.
    Kowalska JK, Nayyar B, Rees JA, Schiewer CE, Lee SC, Kovacs JA, Meyer F, Weyhermüller T, Otero E, DeBeer S (2017) Inorg Chem 56:8147CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Veal BW, Paulikas AP (1983) Phys Rev Lett 51:1995CrossRefGoogle Scholar
  62. 62.
    Veal BW, Paulikas AP (1985) Phys Rev B 31:5399CrossRefGoogle Scholar
  63. 63.
    Jolly WL, Hendrickson DN (1970) J Am Chem Soc 92:1863CrossRefGoogle Scholar
  64. 64.
    Herzberg G (1950) Molecular spectra and molecular structure. vol I. Van Nostrand, PrincetonGoogle Scholar
  65. 65.
    Bethe HA, Salpeter EW (1957) Quantum mechanics of one- and two-electron atoms. Academic Press, New YorkCrossRefGoogle Scholar
  66. 66.
    Löwdin PO (1955) Phys Rev 97:1474CrossRefGoogle Scholar
  67. 67.
    Hermsmeier BD, Fadley CS, Sinkovic B, Krause MO, Jimenez-Mier J, Gerard P, Carlson TA, Manson ST, Bhattacharya SK (1993) Phys Rev B 48:12425CrossRefGoogle Scholar
  68. 68.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157CrossRefGoogle Scholar
  69. 69.
    Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981) J Chem Phys 74:2384CrossRefGoogle Scholar
  70. 70.
    Nelin C, Roos BO, Sadlej AJ, Siegbahn PEM (1982) J Chem Phys 77:3607CrossRefGoogle Scholar
  71. 71.
    Bagus PS, Broer R, Parmigiani F (2006) Chem Phys Lett 421:148CrossRefGoogle Scholar
  72. 72.
    Viinikka E-K, Öhrn Y (1975) Phys Rev B 11:4168CrossRefGoogle Scholar
  73. 73.
    Bagus PS, Freeman AJ, Sasaki F (1973) Phys Rev Lett 30:850CrossRefGoogle Scholar
  74. 74.
    Gubner JA (1994) J Phys A 27:L745CrossRefGoogle Scholar
  75. 75.
    Bagus PS, Nelin CJ, Brundle CR, Chambers SA (in preparation) J Phys Chem CGoogle Scholar
  76. 76.
    Campbell JL, Papp T (2001) At Data Nucl Data Tables 77:1CrossRefGoogle Scholar
  77. 77.
    Prosser F, Hagstrom S (1968) Int J Quantum Chem 2:89CrossRefGoogle Scholar
  78. 78.
    Moore KT, van der Laan G (2009) Rev Mod Phys 81:235CrossRefGoogle Scholar
  79. 79.
    Altmann SL, Herzig P (1994) Point-group theory tables. Clarendon Press, OxfordGoogle Scholar
  80. 80.
    Boca R (2012) A handbook of magnetochemical formulae. Elsevier, AmsterdamGoogle Scholar
  81. 81.
    Bagus PS, Schrenk M, Davis DW, Shirley DA (1974) Phys Rev A 9:1090CrossRefGoogle Scholar
  82. 82.
    Desclaux JP (1974) At Data Nucl Data Tables 12:311CrossRefGoogle Scholar
  83. 83.
    Nelin CJ, Bagus PS, Brundle CR, Ilton ES, Rosso KM J Chem Phys (to be submitted)Google Scholar
  84. 84.
    Kotani A (1999) J Electron Spectrosc Relat Phenom 100:75CrossRefGoogle Scholar
  85. 85.
    Griffith JS (1971) The theory of transition-metal ions. Cambridge Press, CambridgeGoogle Scholar
  86. 86.
    Droubay T, Chambers SA (2001) Phys Rev B 64:205414CrossRefGoogle Scholar
  87. 87.
    Chambers SA, Engelhard MH, Wang L, Droubay TC, Bowden ME, Wahila MJ, Quackenbush NF, Piper LFJ, Lee T-L, Nelin CJ, Bagus PS (2017) Phys Rev B 96:205143CrossRefGoogle Scholar
  88. 88.
    Ilton ES, Du Y, Stubbs JE, Eng PJ, Chaka AM, Bargar JR, Nelin CJ, Bagus PS (2017) Phys Chem Chem Phys 19:30473CrossRefPubMedGoogle Scholar
  89. 89.
    Bagus PS, Nelin CJ, Ilton ES (2013) J Chem Phys 139:244704CrossRefPubMedGoogle Scholar
  90. 90.
    Slater JC (1930) Phys Rev 36:57CrossRefGoogle Scholar
  91. 91.
    Chambers SA (2016) In: Woicik JC (ed) Hard X-ray photoelectron spectroscopy (HAXPES), vol 59. Springer, Heidelberg, p 341CrossRefGoogle Scholar
  92. 92.
    Bagus PS, Pacchioni G, Sousa C, Minerva T, Parmigiani F (1992) Chem Phys Lett 196:641CrossRefGoogle Scholar
  93. 93.
    Sousa C, Minerva T, Pacchioni G, Bagus PS, Parmigiani F (1993) J Electron Spectrosc Relat Phenom 63:189CrossRefGoogle Scholar
  94. 94.
    Egelhoff WF (1987) Surf Sci Rep 6:253CrossRefGoogle Scholar
  95. 95.
    Nelin CJ, Uhl F, Staemmler V, Bagus PS, Fujimori Y, Sterrer M, Kuhlenbeck H, Freund H-J (2014) Phys Chem Chem Phys 16:21953CrossRefPubMedGoogle Scholar
  96. 96.
    Levine IN (2000) Quantum chemistry. Prentice-Hall, Upper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paul S. Bagus
    • 1
    Email author
  • Eugene Ilton
    • 2
  • Connie J. Nelin
    • 3
  1. 1.Department of ChemistryUniversity of North TexasDentonUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.ConsultantAustinUSA

Personalised recommendations