Experimental and Molecular Simulation Studies on Ethanol Conversion to Propylene Over Different Zeolite Catalyst

  • Fangfang Wang
  • Wei Xia
  • Xichuan Mu
  • Kun Chen
  • Longxiang Wang
Article
  • 90 Downloads

Abstract

The selectivity of propylene was constant at 20% during continuous experiments for 8 h on HZSM-5. However, HLEV catalysts produced almost no C3H6 after 2 h. The rapid change is probably due to coke deposition. Excessive adsorption of ethanol on HLEV leads to coke deposition. Lower adsorption energy of ethylene on HLEV makes ethylene desorb quickly after formation.

Graphical Abstract

Keywords

Ethanol Propylene Adsorption Zeolite 

Notes

Acknowledgements

This work is a project sponsored by the National Natural Science Foundation of China (Grant 21406269), Shandong Provincial Natural Science Foundation, China (Grant ZR2014BQ012), Scientific Research Foundation for Returned Scholars, Ministry of Education of China (K1504051C), Shandong Provincial Key Research Program (Grant: 2015GSF121017), the Fundamental Research Funds for the Central Universities (15CX05013A) and the International Cooperation and Exchange Fund, China University of Petroleum (East China) (UPCGJ2018010).

Supplementary material

10562_2018_2375_MOESM1_ESM.docx (382 kb)
Supplementary material 1 (DOCX 382 KB)

References

  1. 1.
    Ren T, Patel M, Blok K (2006) Energy 31:425–451CrossRefGoogle Scholar
  2. 2.
    Parajuli R, Knudsen MT, Birkved M, Djomo SN, Corona A, Dalgaard T (2017) Sci Total Environ 598:497–512CrossRefGoogle Scholar
  3. 3.
    Xia W, Wang F, Mu X, Chen K, Takahashi A, Nakamura I, Fujitani T (2017) Catal Commun 91:62–66CrossRefGoogle Scholar
  4. 4.
    Huangfu J, Mao D, Zhai X, Guo Q (2016) Appl Catal A 520:99–104CrossRefGoogle Scholar
  5. 5.
    Xia W, Wang F, Mu X, Chen K, Takahashi A, Nakamura I, Fujitani T (2017) Catal Commun 90:10–13CrossRefGoogle Scholar
  6. 6.
    Sousa ZSB, Veloso CO, Henriques CA, Silva VTD (2016) J Mol Catal A 422:266–274CrossRefGoogle Scholar
  7. 7.
    Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Catal Today 238:103–110CrossRefGoogle Scholar
  8. 8.
    Song Z, Liu W, Chen C, Takahashi A, Fujitani T (2013) React Kinet Mech Catal 109:221–231CrossRefGoogle Scholar
  9. 9.
    Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77CrossRefGoogle Scholar
  10. 10.
    Bhawe Y, Moliner-Marin M, Lunn JD, Liu Y, Malek A, Davis M (2012) ACS Catal 2:2490–2495CrossRefGoogle Scholar
  11. 11.
    Venkatathri N, Yoo JW (2008) Appl Catal A 340:265–270CrossRefGoogle Scholar
  12. 12.
    Inoue T, Itakura M, Jon H, Oumi Y, Takahashi A, Fujitani T, Sano T (2009) Microporous Mesoporous Mater 122:149–154CrossRefGoogle Scholar
  13. 13.
    Klemm E, Wang J, Emig G (1998) Microporous Mesoporous Mater 26:11–21CrossRefGoogle Scholar
  14. 14.
    Navarro MV, Puértolas B, García T, Murillo R, Mastral AM, Varela-Gandía FJ, Lozano-Castelló D, Cazorla-Amorós D, Bueno-López A (2010) Appl Surf Sci 256:5292–5297CrossRefGoogle Scholar
  15. 15.
    Hansen N, Jakobtorweihen S, Keil FJ (2005) J Chem Phy 122:164705CrossRefGoogle Scholar
  16. 16.
    Jo D, Hong SB, Camblor MA (2015) ACS Catal 5:2270–2274CrossRefGoogle Scholar
  17. 17.
    Beerdsen E, Dubbeldam D, Smit B, Vlugt TJH, Calero S (2003) J Phy Chem B 107:12088–12096CrossRefGoogle Scholar
  18. 18.
    Xin H, Li X, Fang Y, Yi X, Hu W, Chu Y, Zhang F, Zheng A, Zhang H, Li X (2014) J Catal 312:204–215CrossRefGoogle Scholar
  19. 19.
    Huang Y, Dong X, Li M, Yu Y (2014) Catal Sci Technol 5:1093–1105CrossRefGoogle Scholar
  20. 20.
    Li X, Sun Q, Li Y, Wang N, Lu J, Yu J (2014) J Phys Chem C 118:24935–24940CrossRefGoogle Scholar
  21. 21.
    Sukrat K, Tunega D, Aquino AJA, Lischka H, Parasuk V (2012) Theor Chem Acc 131:1232–1243CrossRefGoogle Scholar
  22. 22.
    Delley B (1998) J Quan Chem 69:423–433CrossRefGoogle Scholar
  23. 23.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  24. 24.
    Aguayo AT, Gayubo AG, Tarrío AM, Atutxa A, Bilbao J (2002) J Chem Technol Biotechnol 77:211–216CrossRefGoogle Scholar
  25. 25.
    Silvestrelli PL (2004) Surf Sci 552:17–26CrossRefGoogle Scholar
  26. 26.
    Qin Y, Cui M, Ye MZ (2016) Appl Surf Sci 379:497–504CrossRefGoogle Scholar
  27. 27.
    Castro TP, Silveira EB, Rabelo-Neto RC, Borges LEP, Noronha FB (2018) Catal Today 299:251–262CrossRefGoogle Scholar
  28. 28.
    Guadix-Montero S, Alshammari H, Dalebout R, Nowicka E, Morgan DJ, Shaw G, He Q, Sankar M (2017) Appl Catal A 546:58–66CrossRefGoogle Scholar
  29. 29.
    Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Green Chem 16:748–776CrossRefGoogle Scholar
  30. 30.
    Xia W, Chen K, Takahashi A, Li X, Mu X, Han C, Liu L, Nakamura I, Fujitani T (2016) Catal Commun 73:27–33CrossRefGoogle Scholar
  31. 31.
    Smit B, Maesen TLM (2008) Chem Rev 108:4125–4184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fangfang Wang
    • 1
  • Wei Xia
    • 1
  • Xichuan Mu
    • 1
  • Kun Chen
    • 1
  • Longxiang Wang
    • 1
  1. 1.State Key Laboratory of Heavy Oil Processing, College of Chemical EngineeringChina University of Petroleum (East China)QingdaoChina

Personalised recommendations