Catalysis Letters

, Volume 148, Issue 5, pp 1345–1354 | Cite as

Palladium N-Heterocyclic Carbene Complex of Vitamin B1 Supported on Silica-Coated Fe3O4 Nanoparticles: A Green and Efficient Catalyst for C–C Coupling

Article
  • 35 Downloads

Abstract

Fe3O4@SiO2 nanoparticles were prepared by hydrolysis of TEOS in the presence of Fe3O4 nanoparticles that were synthesized through co-precipitation procedure. Then, thiamine hydrochloride (VB1) was covalently connected with silica to provide a biodegradable, nontoxic and inexpensive NHC ligand for the formation of complex with palladium. This magnetic bionanocatalyst was characterized using FT-IR, XPS, FE-SEM, TEM, EDX, XRD, VSM, TGA and ICP-AES analysis. The Fe3O4@SiO2@VB1-Pd was found as a magnetically separable and highly active catalyst for the Suzuki coupling reactions of various aryl halides with substituted phenylboronic acids. Under appropriate conditions, all reactions afforded the desired products in excellent yields at short reaction times. Moreover, this catalyst can be easily recovered by using a magnetic field and directly reused for five times in this cross coupling with good yield and suitable time.

Graphical Abstract

Keywords

Palladium catalyzed N-Heterocyclic carbene Magnetic nanoparticle support Cross-coupling reactions 

Notes

Acknowledgements

We gratefully acknowledge the partial financial support received from the research council of Alzahra University.

References

  1. 1.
    Lu T, Li X, Gu L, Zhang Y (2014) ChemSusChem 7:2423CrossRefGoogle Scholar
  2. 2.
    Singh S, Mishra P, Srivastava M, Singh SB, Singh J, Prasad Tiwari K (2012) Green Chem Lett Rev 5:587CrossRefGoogle Scholar
  3. 3.
    Lei M, Ma L, Hu L (2010) Monatsh Chem 141:1005CrossRefGoogle Scholar
  4. 4.
    Lei M, Ma L, Hu L (2011) Synth Commun 41:1969CrossRefGoogle Scholar
  5. 5.
    Vaidya SR, Chamergore JJ (2016) Chem Biol Interface 6:47Google Scholar
  6. 6.
    Azizi K, Heydari A (2014) RSC Adv 4:8812CrossRefGoogle Scholar
  7. 7.
    Herrmann WA, Reisinger CP, Spiegler M (1998) J Organomet Chem 557:93CrossRefGoogle Scholar
  8. 8.
    Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612CrossRefGoogle Scholar
  9. 9.
    Purohit VB, Karad SC, Patel KH, Raval DK (2014) RSC Adv 4:46002CrossRefGoogle Scholar
  10. 10.
    Purohit VB, Karad SC, Patel KH, Raval DK (2015) Catal Sci Technol 5:3113CrossRefGoogle Scholar
  11. 11.
    Purohit VB, Karad SC, Patel KH, Raval DK (2016) Tetrahedron 72:1114CrossRefGoogle Scholar
  12. 12.
    Purohit VB, Karad SC, Patel KH, Raval DK (2016) RSC Adv 6:111139CrossRefGoogle Scholar
  13. 13.
    Balu AM, Baruwati B, Serrano E, Cot J, Garcia-Martinez J, Varma RS, Luque R (2011) Green Chem 13:2750CrossRefGoogle Scholar
  14. 14.
    Deng Y, Cai Y, Sun Z, Zhao D (2011) Chem Phys Lett 510:1CrossRefGoogle Scholar
  15. 15.
    Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222CrossRefGoogle Scholar
  16. 16.
    Chekina N, Horak D, Jendelova P, Trchova M, Benes MJ, Hruby M, Herynek V, Turnovcova K, Sykova E (2011) J Mater Chem 21:7630CrossRefGoogle Scholar
  17. 17.
    Yang J, Lee J, Kang J, Chung CH, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Nanotechnology 19:075610CrossRefGoogle Scholar
  18. 18.
    Wang D, Liu W, Bian F, Yu W (2015) New J Chem 39:2052CrossRefGoogle Scholar
  19. 19.
    Gholinejad M, Razeghi M, Najera C (2015) RSC Adv 5:49568CrossRefGoogle Scholar
  20. 20.
    Karimi B, Mansouri F, Vali H (2014) Green Chem 16:2587CrossRefGoogle Scholar
  21. 21.
    Liu H, Wang P, Yang H, Niu J, Ma J (2015) New J Chem 39:4343CrossRefGoogle Scholar
  22. 22.
    Ghorbani-Choghamarani A, Azadi G (2016) Appl Organometal Chem 30:247CrossRefGoogle Scholar
  23. 23.
    Zhang F, Chen M, Wu X, Wang W, Li H (2014) J Mater Chem A 2:484CrossRefGoogle Scholar
  24. 24.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457CrossRefGoogle Scholar
  25. 25.
    Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Chem Rev 111:563CrossRefGoogle Scholar
  26. 26.
    Wencel-Delord J, Panossian A, Leroux FR, Colobert F (2015) Chem Soc Rev 44:3418CrossRefGoogle Scholar
  27. 27.
    Meyer FM, Collins JC, Borin B, Bradow J, Liras S, Limberakis C, Mathiowetz AM, Philippe L, Price D, Song K, James K (2012) J Org Chem 7:3099CrossRefGoogle Scholar
  28. 28.
    Kappaun S, Slugovc C, List EJW (2008) Int J Mol Sci 9:1527CrossRefGoogle Scholar
  29. 29.
    Pahlevanneshan Z, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoore Baltork I, Loghmani-Khouzani H (2016) J Organomet Chem 809:31CrossRefGoogle Scholar
  30. 30.
    Mohammadi E, Movassagh B (2016) J Organomet Chem 822:62CrossRefGoogle Scholar
  31. 31.
    Yaşar S, Şahin Ç, Arslan M, Özdemir I (2015) J Organomet Chem 776:107CrossRefGoogle Scholar
  32. 32.
    Liu X, Ma Z, Xing J, Liu H (2004) J Magn Magn Mater 270:1CrossRefGoogle Scholar
  33. 33.
    Leopold N, Cîntǎ-Pînzaru S, Baia M, Antonescu E, Cozar O, Kiefer W, Popp J (2005) Vib Spectrosc 39:169CrossRefGoogle Scholar
  34. 34.
    Kaiser R, Miskolczy G (1970) J Appl Phys 41:1064CrossRefGoogle Scholar
  35. 35.
    Dong Y, Wu X, Chen X, Wei Y (2017) Carbohydr Polym 160:106CrossRefGoogle Scholar
  36. 36.
    Sobhani S, Ghasemzadeh MS, Honarmand M, Zarifi F (2014) RSC Adv 4:44166CrossRefGoogle Scholar
  37. 37.
    Wang X, Hu P, Xue F, Wei Y (2014) Carbohydr Polym 114:476CrossRefGoogle Scholar
  38. 38.
    Ke H, Chen X, Zou G (2014) Appl Organometal Chem 28:54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Physic-ChemistryAlzahra UniversityTehranIran

Personalised recommendations