Three-Dimensional Graphene–Magnetic Palladium Nanohybrid: A Highly Efficient and Reusable Catalyst for Promoting Organic Reactions

Article
  • 34 Downloads

Abstract

In this work, graphene aerogel (GA) decorated with Fe3O4@SiO2@Pd nanoparticles (GA-FSNP@Pd) as a novel three-dimensional graphene–magnetic palladium nanohybrid catalyst. This catalyst showed high catalytic activity for the Suzuki and Heck cross-coupling reactions. This noteworthy catalyst activity can be due to the high dispersion of FSNP@Pd nanoparticles on GA. The nanohybrid exhibits an interconnected mesoporous framework of graphene sheets with uniform dispersion of FSNP@Pd nanoparticles. Interestingly, the catalyst could be recovered in a facile manner from the reaction mixture and recycled ten times without appreciable loss of activity. High yield, low reaction time, magnetic separation and non-toxicity of the nanohybrid catalyst are the main merits of this protocol.

Graphical Abstract

Keywords

Graphene aerogel Palladium nanoparticles Catalysis Suzuki coupling Mizoroki–Heck coupling 

Notes

Acknowledgements

Financial support of this work by Tarbiat Modares University and Kosar University of Bojnord is gratefully acknowledged. Mahboobeh Tanhaei; PhD student who did all the experience. Alireza Mahjoub; Supervisor of the project. Razieh Nejat; Advisor of the project.

References

  1. 1.
    Jiang S, Zhu C, Dong S (2013) Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J Mater Chem A 1(11):3593–3599CrossRefGoogle Scholar
  2. 2.
    Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9(2):357–390CrossRefGoogle Scholar
  3. 3.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428CrossRefGoogle Scholar
  4. 4.
    Mao S, Wen Z, Kim H, Lu G, Hurley P, Chen J (2012) A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 6(8):7505–7513CrossRefGoogle Scholar
  5. 5.
    Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J et al (2014) Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater 26(20):3333–3337CrossRefGoogle Scholar
  6. 6.
    Yu M, Huang Y, Li C, Zeng Y, Wang W, Li Y et al (2015) Building three-dimensional graphene frameworks for energy storage and catalysis. Adv Funct Mater 25(2):324–330CrossRefGoogle Scholar
  7. 7.
    Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8):3132–3137CrossRefGoogle Scholar
  8. 8.
    Wan W, Zhang F, Yu S, Zhang R, Zhou Y (2016) Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J Chem 40(4):3040–3046CrossRefGoogle Scholar
  9. 9.
    Chen M, Zhang C, Li X, Zhang L, Ma Y, Zhang L et al (2013) A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. J Mater Chem A 1(8):2869–2877CrossRefGoogle Scholar
  10. 10.
    Li X, Wang X, Song S, Liu D, Zhang H (2012) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem Eur J 18(24):7601–7607CrossRefGoogle Scholar
  11. 11.
    Zhu M, Diao G (2011) Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@ C nanocomposites: preparation, characterization, and their catalytic activity toward Suzuki and Heck coupling reactions. J Phys Chem C 115(50):24743–24749CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Sun T, Chen C, Xiao F, Gong Z, Wang S (2014) Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported Pd nanoparticles: one-pot synthesis and its catalytic properties. ACS Appl Mater Interfaces 6(23):21035–21040CrossRefGoogle Scholar
  13. 13.
    Pascanu V, Bermejo Gómez A, Ayats C, Platero-Prats AE, Carson F, Su J et al (2014) Double-supported silica-metal–organic framework palladium nanocatalyst for the aerobic oxidation of alcohols under batch and continuous flow regimes. ACS Catal 5(2):472–479CrossRefGoogle Scholar
  14. 14.
    Zhang D, Guan Y, Hensen EJ, Xue T, Wang Y (2014) Tuning the hydrogenation activity of Pd NPs on Al–MIL-53 by linker modification. Catal Sci Technol 4(3):795–802CrossRefGoogle Scholar
  15. 15.
    Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen (2012) K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085CrossRefGoogle Scholar
  16. 16.
    Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432CrossRefGoogle Scholar
  17. 17.
    Jeong H-K, Jin MH, An KH, Lee YH (2009) Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J Phys Chem C 113(30):13060–13064CrossRefGoogle Scholar
  18. 18.
    Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703CrossRefGoogle Scholar
  19. 19.
    Han W, Ren L, Gong L, Qi X, Liu Y, Yang L et al (2014) Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities. ACS Sustain Chem Eng 2(4):741–748CrossRefGoogle Scholar
  20. 20.
    Liu M, Peng C, Yang W, Guo J, Zheng Y, Chen P et al (2015) Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation. Electrochim Acta 178:838–846CrossRefGoogle Scholar
  21. 21.
    Cano R, Ramon DJ, Yus M (2011) Impregnated ruthenium on magnetite as a recyclable catalyst for the N-alkylation of amines, sulfonamides, sulfinamides, and nitroarenes using alcohols as electrophiles by a hydrogen autotransfer process. J Org Chem 76(14):5547–5557CrossRefGoogle Scholar
  22. 22.
    Hu M-L, Safarifard V, Doustkhah E, Rostamnia S, Morsali A, Nouruzi N et al (2018) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater 256:111–127CrossRefGoogle Scholar
  23. 23.
    Cai M, Peng J, Hao W, Ding G (2011) A phosphine-free carbonylative cross-coupling reaction of aryl iodides with arylboronic acids catalyzed by immobilization of palladium in MCM-41. Green Chem 13(1):190–196CrossRefGoogle Scholar
  24. 24.
    Miao T, Wang L, Li P, Yan J (2008) A highly efficient and recyclable ionic liquid anchored pyrrolidine catalyst for enantioselective Michael additions. Synthesis 2008(23):3828–3834CrossRefGoogle Scholar
  25. 25.
    Ikegami S, Hamamoto H (2009) Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev 109(2):583–593CrossRefGoogle Scholar
  26. 26.
    Sun R, Liu B, Li BG, Jie S (2016) Palladium(II)@ zirconium-based mixed-linker metal–organic frameworks as highly efficient and recyclable catalysts for Suzuki and Heck cross-coupling reactions. ChemCatChem 8(20):3261–3271CrossRefGoogle Scholar
  27. 27.
    Huang Y, Zheng Z, Liu T, Lü J, Lin Z, Li H et al (2011) Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catal Commun 14(1):27–31CrossRefGoogle Scholar
  28. 28.
    Fan T, Pan D, Zhang H (2011) Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind Eng Chem Res 50(15):9009–9018CrossRefGoogle Scholar
  29. 29.
    Shabaan S, Letafat B, Esmati N, Shafiee A, Foroumadi A (2012) Synthesis and characterization of 1, 10-phenanthroline-2, 9-dicarbaldehyde-bis-(thiosemicarbazone). Asian J Chem 24(6):2819–2820Google Scholar
  30. 30.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRefGoogle Scholar
  31. 31.
    Xiong Z, Ji Y, Fang C, Zhang Q, Zhang L, Ye M et al (2014) Facile preparation of core–shell magnetic metal–organic framework nanospheres for the selective enrichment of endogenous peptides. Chem Eur J 20(24):7389–7395CrossRefGoogle Scholar
  32. 32.
    Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17(31):3354–3362CrossRefGoogle Scholar
  33. 33.
    Li P, Wang L, Zhang L, Wang GW (2012) Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv Synth Catal 354(7):1307–1318CrossRefGoogle Scholar
  34. 34.
    Xuan S, Jiang W, Gong X (2011) Immobilization of Pd nanocatalysts on magnetic rattles and their catalytic property. Dalton Trans 40(31):7827–7830CrossRefGoogle Scholar
  35. 35.
    Yan W, He F, Gai S, Gao P, Chen Y, Yang P (2014) A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance. J Mater Chem 2(10):3605–3612CrossRefGoogle Scholar
  36. 36.
    Ta TKH, Trinh M-T, Long NV, Nguyen TTM, Nguyen TLT, Thuoc TL et al (2016) Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications. Colloids Surf A 504:376–383CrossRefGoogle Scholar
  37. 37.
    Yinghuai Z, Peng SC, Emi A, Zhenshun S, Kemp RA (2007) Supported ultra small palladium on magnetic nanoparticles used as catalysts for Suzuki cross-coupling and heck reactions. Adv Synth Catal 349(11-12):1917–1922CrossRefGoogle Scholar
  38. 38.
    Shylesh S, Wang L, Thiel WR (2010) Palladium(II)-phosphine complexes supported on magnetic nanoparticles: filtration-free, recyclable catalysts for Suzuki–Miyaura cross-coupling reactions. Adv Synth Catal 352(2–3):425–432CrossRefGoogle Scholar
  39. 39.
    Shylesh S, Wang L, Demeshko S, Thiel WR (2010) Facile synthesis of mesoporous magnetic nanocomposites and their catalytic application in carbon–carbon coupling reactions. ChemCatChem 2(12):1543–1547CrossRefGoogle Scholar
  40. 40.
    Liao Y, He L, Huang J, Zhang J, Zhuang L, Shen H et al (2010) Magnetite nanoparticle-supported coordination polymer nanofibers: synthesis and catalytic application in Suzuki-Miyaura coupling. ACS Appl Mater 2(8):2333–2338CrossRefGoogle Scholar
  41. 41.
    Borhade SR, Waghmode SB (2011) Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls. Beilstein J Org Chem 7:310–319CrossRefGoogle Scholar
  42. 42.
    Jang Y, Chung J, Kim S, Jun SW, Kim BH, Lee DW et al (2011) Simple synthesis of Pd–Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys Chem Chem Phys 13(7):2512–2516CrossRefGoogle Scholar
  43. 43.
    Zeltner M, Schätz A, Hefti ML, Stark WJ (2011) Magnetothermally responsive C/Co@ PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. J Mater Chem 21(9):2991–2996CrossRefGoogle Scholar
  44. 44.
    Schätz A, Long TR, Grass RN, Stark WJ, Hanson PR, Reiser O (2010) Immobilization on a nanomagnetic Co/C surface using ROM polymerization: generation of a hybrid material as support for a recyclable palladium catalyst. Adv Funct Mater 20(24):4323–4328CrossRefGoogle Scholar
  45. 45.
    Amali AJ, Rana RK (2009) Stabilisation of Pd (0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions. Green Chem 11(11):1781–1786CrossRefGoogle Scholar
  46. 46.
    Yang J, Wang D, Liu W, Zhang X, Bian F, Yu W (2013) Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem 15(12):3429–3437CrossRefGoogle Scholar
  47. 47.
    Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10(1):59–66CrossRefGoogle Scholar
  48. 48.
    Ioni YV, Lyubimov SE, Davankov VA, Gubin SP (2013) The use of palladium nanoparticles supported on graphene oxide in the Mizoroki-Heck reaction. Russ J Inorg Chem 58(4):392–394CrossRefGoogle Scholar
  49. 49.
    Nabid MR, Bide Y, Tabatabaei Rezaei SJ (2011) Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki–Heck cross-coupling reactions. Appl Catal A 406(1):124–132CrossRefGoogle Scholar
  50. 50.
    Zhu M, Wang Y, Wang C, Li W, Diao G (2013) Hematite nanoparticle-templated hollow carbon nanonets supported palladium nanoparticles: preparation and application as efficient recyclable catalysts. Catal Sci Technol 3(4):952–961CrossRefGoogle Scholar
  51. 51.
    Ko S, Jang J (2006) A highly efficient palladium nanocatalyst anchored on a magnetically functionalized polymer-nanotube support. Angew Chem Int Ed 45(45):7564–7567CrossRefGoogle Scholar
  52. 52.
    Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. ChemComm (14):1468–1470Google Scholar
  53. 53.
    Coker VS, Bennett JA, Telling ND, Henkel T, Charnock JM, van der Laan G et al (2010) Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4(5):2577–2584CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentTarbiat Modares UniversityTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceKosar University of BojnordBojnordIran

Personalised recommendations