Catalysis Letters

, Volume 148, Issue 5, pp 1445–1450 | Cite as

Where Does the Sulphur Go? Deactivation of a Low Temperature CO Oxidation Catalyst by Sulphur Poisoning

  • János SzanyiEmail author
  • Donghai Mei
  • Tamás Varga
  • Charles H. F. Peden
  • Iljeong Heo
  • Se Oh
  • Chang Hwan Kim


Sulphate formation, occurring preferentially at the CuO/CeOx–ZrOx interface, is responsible for the deactivation of low temperature CO oxidation catalysts. XRD, FTIR and isotope exchange experiments, as well as DFT calculations, reveal the poisoning mechanism of sulphate formation on the CeOx/ZrOx support material.

Graphical Abstract


Cu on CeOx/ZrOx CO oxidation Sulphur poisoning Metal oxide interface 



JS, DM, TV and CHFP gratefully acknowledge the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of their participation in this work. Their studies were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle under contract Number DE-AC05-76RL01830.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2018_2343_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3249 KB)


  1. 1.
    Gamarra D, Belver C, Fernández-García M, Martínez-Arias A (2007) J Am Chem Soc 129:12064–12065CrossRefGoogle Scholar
  2. 2.
    Martínez-Arias A, Gamarra D, Fernández-García M, Hornés A, Belver C (2009) Top Catal 52:1425–1432CrossRefGoogle Scholar
  3. 3.
    Monte M, Gamarra D, López Cámara A, Rasmussen SB, Gyorffy N, Schay Z, Martínez-Arias A, Conesa JC (2014) Catal Today 229:104–113CrossRefGoogle Scholar
  4. 4.
    Shi L, Zhang G (2016) Catal Lett 146:1449–1456CrossRefGoogle Scholar
  5. 5.
    Wang WW, Du PP, Zou SH, He HY, Wang RX, Jin Z, Shi S, Huang YY, Si R, Song QS, Jia C-J, Yan CH (2015) ACS Catal 5:2088–2099CrossRefGoogle Scholar
  6. 6.
    Zhang R, Haddadin T, Rubiano DP, Nair H, Polster CS, Baertsch CD (2011) ACS Catal 1:519–525CrossRefGoogle Scholar
  7. 7.
    Martínez-Arias A, Gamarra D, Hungría A, Fernández-García M, Munuera G, Hornés A, Bera P, Conesa J, Cámara A (2013) Catalysts 3:378CrossRefGoogle Scholar
  8. 8.
    Sedmak G, Hočevar S, Levec J (2003) J Catal 213:135–150CrossRefGoogle Scholar
  9. 9.
    Martínez-Arias A, Hungría AB, Fernández-García M, Conesa JC, Munuera G (2004) J Phys Chem B 108:17983–17991CrossRefGoogle Scholar
  10. 10.
    Jia AP, Hu GS, Meng L, Xie YL, Lu JQ, Luo MF (2012) J Catal 289:199–209CrossRefGoogle Scholar
  11. 11.
    Moura JS, Fonseca JdSL, Bion N, Epron F, Silva TdF, Maciel CG, Assaf JM, Rangel MdC (2014) Catal Today 228:40–50CrossRefGoogle Scholar
  12. 12.
    Zhang L, Chen T, Zeng S, Su H (2016) J Environ Chem Eng 4:2785–2794CrossRefGoogle Scholar
  13. 13.
    Pu ZY, Liu XS, Jia AP, Xie YL, Lu JQ, Luo MF (2008) J Phys Chem C 112:15045–15051CrossRefGoogle Scholar
  14. 14.
    Ayastuy JL, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz MA (2012) Int J Hydrogen Energy 37:1993–2006CrossRefGoogle Scholar
  15. 15.
    Ran R, Weng D, Wu X, Fan J, Wang L, Wu X (2011) J Rare Earths 29:1053–1059CrossRefGoogle Scholar
  16. 16.
    Si R, Zhang YW, Wang LM, Li SJ, Lin BX, Chu WS, Wu ZY, Yan CH (2007) J Phys Chem C 111:787–794CrossRefGoogle Scholar
  17. 17.
    Davó-Quiñonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson JA (2016) ACS Catal 6:1723–1731CrossRefGoogle Scholar
  18. 18.
    Gamarra D, Fernández-García M, Belver C, Martínez-Arias A (2010) J Phys Chem C 114:18576–18582CrossRefGoogle Scholar
  19. 19.
    Heo I, Schmieg SJ, Oh SH, Li W, Peden CHF, Kim CH, Szanyi J (2018) Catal Sci Technol. Google Scholar
  20. 20.
    Szanyi J, Kwak JH (2014) Chem Comm 50:14998–15001CrossRefGoogle Scholar
  21. 21.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  22. 22.
    Kresse G, Hafner J (1993) Phys.Rev. B 47:558–561CrossRefGoogle Scholar
  23. 23.
    Kresse G, Hafner J (1994) Phys.Rev. B 49:14251–14269CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmuller J (1996) Phys.Rev. B 54:11169–11186CrossRefGoogle Scholar
  25. 25.
    Blochl PE (1994) Phys.Rev. B 50:17953–17979CrossRefGoogle Scholar
  26. 26.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  28. 28.
    Mei DH (2013) J Energy Chem 22:524–532CrossRefGoogle Scholar
  29. 29.
    Mei DH, Deskins NA, Dupuis M, Ge QF (2008) J Phys Chem C 112:4257–4266CrossRefGoogle Scholar
  30. 30.
    Mei DH, Deskins NA, Dupuis M (2007) Surf Sci 601:4993–5001CrossRefGoogle Scholar
  31. 31.
    Mei DH, Deskins NA, Dupuis M, Ge QF (2007) J Phys Chem C 111:10514–10522CrossRefGoogle Scholar
  32. 32.
    Hornés A, Hungría AB, Bera P, Cámara AL, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010) J Am Chem Soc 132:34–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA
  2. 2.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  3. 3.Center for Greenhouse Gas ResourcesKorea Research Institute of Chemical TechnologyDaejeonSouth Korea
  4. 4.Chemical & Materials Systems Lab, General Motors Global Research and DevelopmentWarrenUSA
  5. 5.Advanced Catalysts and Emission-Control Research LabResearch and Development Division, Hyundai Motor GroupHwaseongSouth Korea

Personalised recommendations