Catalysis Letters

, Volume 148, Issue 3, pp 933–939 | Cite as

Using Pd as a Cocatalyst on GaN–ZnO Solid Solution for Visible-Light-Driven Overall Water Splitting

  • Zheng Li
  • Fuxiang Zhang
  • Jingfeng Han
  • Jian Zhu
  • Mingrun Li
  • Bingqing Zhang
  • Wenjun Fan
  • Junling Lu
  • Can Li
Article
  • 278 Downloads

Abstract

Rhodium was reported to be an essential component of the efficient cocatalyst (Rh2−xCrxO3 or core/shell of Rh@Cr2O3) on GaN–ZnO for photocatalytic overall water splitting (POWS). Herein we demonstrate that the Rh can be replaced by less-expensive Pd deposited via atomic layer deposition and together with photodeposition of Cr2O3 shell, a comparable activity in POWS can be achieved even with much less Pd loading than Rh in Rh2−xCrxO3/GaN–ZnO under the same reaction conditions.

Graphical Abstract

Keywords

Photocatalysis Cocatalyst Overall water splitting GaN–ZnO ALD 

Notes

Acknowledgements

This work is financially supported by 973 National Basic Research Program of the Ministry of Science and Technology (Grant No.2014CB239400), National Natural Science Foundation of China (21633010) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB01020300).

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Supplementary material

10562_2018_2294_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2565 KB)

References

  1. 1.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253CrossRefGoogle Scholar
  2. 2.
    Fabian DM, Hu S, Singh N, Houle FA, Hisatomi T, Domen K, Osterloh FE, Ardo S (2015) Energy Environ Sci 8:2825CrossRefGoogle Scholar
  3. 3.
    Acar C, Dincer I, Naterer GF (2016) Int J Energy Res 40:1449CrossRefGoogle Scholar
  4. 4.
    Li R (2017) Chin J Catal 38:5CrossRefGoogle Scholar
  5. 5.
    Yang J, Wang D, Han H, Li C (2013) Acc Chem Res 46:1900Google Scholar
  6. 6.
    Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Chem Soc Rev 43:7787CrossRefGoogle Scholar
  7. 7.
    Bai S, Yin W, Wang L, Li Z, Xiong Y (2016) RSC Adv 6:57446CrossRefGoogle Scholar
  8. 8.
    Zhang GG, Lan ZA, Lin LH, Lin S, Wang XC (2016) Chem Sci 7:3062CrossRefGoogle Scholar
  9. 9.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625CrossRefGoogle Scholar
  10. 10.
    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440:295CrossRefGoogle Scholar
  11. 11.
    Wang X, Maeda K, Lee Y, Domen K (2008) Chem Phys Lett 457:134CrossRefGoogle Scholar
  12. 12.
    Kibria MG, Nguyen HP, Cui K, Zhao S, Liu D, Guo H, Trudeau ML, Paradis S, Hakima A-R, Mi Z (2013) ACS Nano 7:7886CrossRefGoogle Scholar
  13. 13.
    Maeda K, Lu D, Domen K (2013) Chem Eur J 19:4986CrossRefGoogle Scholar
  14. 14.
    Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M (2013) Nat Nanotechnol 8:247CrossRefGoogle Scholar
  15. 15.
    Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) Chem Commun 50:2543CrossRefGoogle Scholar
  16. 16.
    Yeh TF, Teng CY, Chen SJ, Teng H (2014) Adv Mater 26:3297CrossRefGoogle Scholar
  17. 17.
    Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K (2015) Angew Chem Int Ed 54:2955CrossRefGoogle Scholar
  18. 18.
    Xu J, Pan C, Takata T, Domen K (2015) Chem Commun 51:7191CrossRefGoogle Scholar
  19. 19.
    Maeda K, Teramura K, Domen K (2008) J Catal 254:198CrossRefGoogle Scholar
  20. 20.
    Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) J Am Chem Soc 134:8254CrossRefGoogle Scholar
  21. 21.
    Chuang CH, Lu YG, Lee K, Ciston J, Dukovic G (2015) J Am Chem Soc 137:6452CrossRefGoogle Scholar
  22. 22.
    Li Y, Zhu L, Yang Y, Song H, Lou Z, Guo Y, Ye Z (2015) Small 11:871CrossRefGoogle Scholar
  23. 23.
    Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K (2006) Angew Chem Int Ed 118:7970CrossRefGoogle Scholar
  24. 24.
    Maeda K, Teramura K, Domen K (2007) Catal Surv Asia 11:145CrossRefGoogle Scholar
  25. 25.
    Phivilay SP, Roberts CA, Puretzky AA, Domen K, Wachs IE (2013) J Phys Chem Lett 4:3719CrossRefGoogle Scholar
  26. 26.
    Vesborg PCK, Jaramillo TF (2012) RSC Adv 2:7933CrossRefGoogle Scholar
  27. 27.
    Maeda K, Domen K (2010) Chem Mater 22:612CrossRefGoogle Scholar
  28. 28.
    Gharachorlou A, Detwiler MD, Nartova AV, Lei Y, Lu J, Elam JW, Delgass WN, Ribeiro FH, Zemlyanov DY (2014) ACS Appl Mater Interfaces 6:14702CrossRefGoogle Scholar
  29. 29.
    Berto TF, Sanwald KE, Byers JP, Browning ND, Gutiérrez OY, Lercher JA (2016) J Phys Chem Lett 7:4358CrossRefGoogle Scholar
  30. 30.
    Garcia-Esparza AT, Shinagawa T, Ould-Chikh S, Qureshi M, Peng X, Wei N, Anjum DH, Clo A, Weng TC, Nordlund D (2017) Angew Chem Int Ed 56(21):5780–5784CrossRefGoogle Scholar
  31. 31.
    Maeda K, Lu D, Teramura K, Domen K (2008) J Mater Chem 18:3539CrossRefGoogle Scholar
  32. 32.
    Maeda K, Teramura K, Masuda H, Takata T, Saito N, Inoue Y, Domen K (2006) J Phys Chem B 110:13107CrossRefGoogle Scholar
  33. 33.
    Xiong A, Yoshinaga T, Ikeda T, Takashima M, Hisatomi T, Maeda K, Setoyama T, Teranishi T, Domen K (2014) Eur J Inorg Chem 2014:767CrossRefGoogle Scholar
  34. 34.
    Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) J Am Chem Soc 130:7176CrossRefGoogle Scholar
  35. 35.
    Bai S, Xiong Y (2015) Chem Commun 51:10261CrossRefGoogle Scholar
  36. 36.
    Gharachorlou A, Detwiler MD, Nartova AV, Lei Y, Lu J, Elam JW, Delgass WN, Ribeiro FH, Zemylanov D (2014) ACS Appl Mater Interfaces 6:14702CrossRefGoogle Scholar
  37. 37.
    Hassel M, Hemmerich I, Kuhlenbeck H, Freund H-J (1996) Surf Sci Spectra 4:246CrossRefGoogle Scholar
  38. 38.
    Markovic N, Schmidt T, Stamenkovic V, Ross P (2001) Fuel Cells, 1:105CrossRefGoogle Scholar
  39. 39.
    Li YH, Xing J, Chen ZJ, Li Z, Tian F, Zheng LR, Wang HF, Hu P, Zhao HJ, Yang HG (2013) Nat Commun 4:2500Google Scholar
  40. 40.
    Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M (2014) Science 343:1339CrossRefGoogle Scholar
  41. 41.
    Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K (2009) J Phys Chem C 113:10151CrossRefGoogle Scholar
  42. 42.
    Sreethawong T, Yoshikawa S (2005) Catal Commun 6:661CrossRefGoogle Scholar
  43. 43.
    Zhang J, Qiao SZ, Qi L, Yu J (2013) Phys Chem Chem Phys 15:12088CrossRefGoogle Scholar
  44. 44.
    Nosaka Y, Norimatsu K, Miyama H (1984) Chem Phys Lett 106:128CrossRefGoogle Scholar
  45. 45.
    Wang L, Ge J, Wang A, Deng M, Wang X, Bai S, Li R, Jiang J, Zhang Q, Luo Y (2014) Angew Chem Int Ed 126:5207CrossRefGoogle Scholar
  46. 46.
    Maeda K, Hashiguchi H, Masuda H, Abe R, Domen K (2008) J Phys Chem C 112:3447CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Yates JT Jr (2012) Chem Rev 112:5520CrossRefGoogle Scholar
  48. 48.
    Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U (2005) J Electrochem Soc 152:J23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zheng Li
    • 1
    • 2
  • Fuxiang Zhang
    • 1
  • Jingfeng Han
    • 1
    • 2
  • Jian Zhu
    • 1
    • 2
  • Mingrun Li
    • 1
  • Bingqing Zhang
    • 1
  • Wenjun Fan
    • 1
  • Junling Lu
    • 3
  • Can Li
    • 1
  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian National Laboratory for Clean Energy, iChEMDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Chemical Physics, iChEM, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations