Catalysis Letters

, Volume 149, Issue 3, pp 645–664 | Cite as

Carbon Permeation: The Prerequisite Elementary Step in Iron-Catalyzed Fischer–Tropsch Synthesis

  • Rui Gao
  • Xingchen Liu
  • Zhi Cao
  • Xing-Wu Liu
  • Kuan Lu
  • Ding Ma
  • Yong Yang
  • Yong-Wang Li
  • Roald HoffmannEmail author
  • Xiao-Dong WenEmail author


Carbon permeation into iron, a very important initial stage in iron-catalyzed heterogeneous reactions such as Fischer–Tropsch synthesis (FTS), is explored theoretically, to extend our thermodynamic and kinetic understanding of the process. The interaction of C atoms with five model surfaces (Fe (100), (110), (111), (211), (310)) was studied in six distinct ways. In the first, the random deposition of C atoms on the Fe surfaces was simulated by molecular dynamics, with C atoms released gradually. It shows that the early stages of carburization is a C permeation process, without much disturbance to the Fe surfaces. In the second approach, C atoms were approached to the surfaces sequentially. They bind readily (by 7–9 eV per C) to the surfaces, but to a different extent—strongest on Fe (100), and weakest on Fe (111). Addition of further C atoms proceeds with a slightly decreasing magnitude of the chemisorption energy, because of the increasing positive charges on the Fe atoms. At a certain coverage, different on each surface, C atoms prefer in calculation to go subsurface. C2 units formed on some of the surfaces. In a third approach, detailed transition paths of C permeation subsurface were calculated, with associated barriers in the order Fe (100) > (111) > (310) > (211) > (110). Differences in stacking geometries of the Fe layers in these surfaces appear to be the main cause of the variation. Comparing C permeation with surface migration on clean surfaces, the barrier of the former is smaller than that of the latter for most of the surfaces, except Fe (111). At intermediate C coverage, the (100) surface also prefers migration to permeation. In a fourth approach, we calculate that with increasing carbon chemical potential, the surface energies of iron (110), (111), and (211) surfaces decrease, while those of (100) and (310) first decrease, then increase. Based on these surface energies, a Wulff construction of nanoparticle facets is made. In a fifth approach, the position in energy of the d-band centers of the Fe surfaces upon C permeation was studied. For all the surfaces, the d-band centers move away from the Fermi level with increasing C coverage, and start to resemble those of the bulk carbide phases at high C coverage. In the last approach, we show that C permeation not only lowers the barriers of model reactions for CH4 formation and C–C chain propagation, two competing processes in FTS, but also changes the selectivity of the two competing processes. At high C coverage, chain propagation becomes preferred. A general picture emerges of C permeation on Fe surfaces as a stepwise process with opposite thermodynamic and kinetic preferences.

Graphical Abstract


Iron catalyst Fischer–Tropsch synthesis DFT Carbon permeation 



The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21473229, 91545121, 21603252, 91645115 and 21473003), No. 201601D021048 from the Shanxi Province Science Foundation for Youth, and Synfuels China, Co. Ltd. We also acknowledge National Thousand Young Talents Program of China, Hundred-Talent Program of Chinese Academy of Sciences and Shanxi Hundred-Talent Program.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2018_2651_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4849 KB)


  1. 1.
    Anderson RB (1984) The Fischer-Tropsch Synthesis. Academic Press, OrlandoGoogle Scholar
  2. 2.
    Dry ME (1982) Hydrocarb Process 61:121Google Scholar
  3. 3.
    Gregor JH (1990) Catal Lett 7:317Google Scholar
  4. 4.
    Fox JM (1993) Catal Rev—Sci Eng 35:169Google Scholar
  5. 5.
    Geerlings JJC, Wilson JH, Kramer GJ, Kuipers HPCE, Hoek A, Huisman HM (1999) Appl Catal A 186:27Google Scholar
  6. 6.
    Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85Google Scholar
  7. 7.
    Gaube J, Klein HF (2008) J Mol Catal A 283:60Google Scholar
  8. 8.
    Govender NS, de Croon MHJM, Schouten JC (2010) Appl Catal A 373:81Google Scholar
  9. 9.
    Pijolat M, Perrichon V, Bussière P (1987) J Catal 107:82Google Scholar
  10. 10.
    Dry ME, Shingles T, Boshoff LJ, Botha CVH (1970) J Catal 17:347Google Scholar
  11. 11.
    Li S, O’Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E (2001) Appl Catal A 219:215Google Scholar
  12. 12.
    de Smit E, Beale AM, Nikitenko S, Weckhuysen BM (2009) J Catal 262:244Google Scholar
  13. 13.
    Hofer L, (1956) Catalysis vol 4. Emmett PH (ed). Reinholt, New YorkGoogle Scholar
  14. 14.
    Jin YM, Mansker L, Datye AK (1999) Am Chem Soc Div Pet Chem 44:97–99Google Scholar
  15. 15.
    Davis BH (2003) Catal Today 84:83Google Scholar
  16. 16.
    Caceres PG (2006) Mater Charact 56:26Google Scholar
  17. 17.
    de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, Weckhuysen BM (2010) J Am Chem Soc 132:14928Google Scholar
  18. 18.
    Panaccione G, Fujii J, Vobornik I, Trimarchi G, Binggeli N, Goldoni A, Larciprete R, Rossi G (2006) Phys Rev B 73:035431Google Scholar
  19. 19.
    Arabczyk W, Narkiewicz U (1997) Vacuum 48:347Google Scholar
  20. 20.
    Arabczyk W, Moszyński D, Narkiewicz U (1999) Vacuum 54:3Google Scholar
  21. 21.
    Arabczyk W, Rausche E, Storbeck F (1991) Surf Sci 247:264Google Scholar
  22. 22.
    Liu X-w, Li Y-w, Wang J-g, Huo C-f (2012) J Fuel Chem Technol 40:202Google Scholar
  23. 23.
    Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) Surf Sci 606:733Google Scholar
  24. 24.
    Sorescu DC (2006) Phys Rev B 73:155420Google Scholar
  25. 25.
    Jiang DE, Carter EA (2005) Phys Rev B 71:045402Google Scholar
  26. 26.
    Jiang DE, Carter EA (2003) Phys Rev B 67:214103Google Scholar
  27. 27.
    Begtrup GE, Gannett W, Meyer JC, Yuzvinsky TD, Ertekin E, Grossman JC, Zettl A (2009) Phys Rev B 79:205409Google Scholar
  28. 28.
    Ji J, Duan X, Gong X, Qian G, Zhou X, Chen D, Yuan W (2013) Ind Eng Chem Res 52:17151Google Scholar
  29. 29.
    Archard JF, Rowntree RA (1988) Proc R Soc Lond A 418:405Google Scholar
  30. 30.
    Ding M, Yang Y, Wu B, Li Y, Wang T, Ma L (2014) Energy Procedia 61:2267Google Scholar
  31. 31.
    Cheshkova KT, Bibin VN, Popov BI (1976) React Kinet Catal Lett 4:307Google Scholar
  32. 32.
    Storch G, Golambik N, Anderson R (1954) Synthesis of hydrocarbons from carbon monoxide and hydrogen [Russian translation]. Inostr. Lit., MoscowGoogle Scholar
  33. 33.
    Karabelchtchikova O. Fundamentals of Mass Transfer in Gas Carburizing Degree of Doctor of Philosophy Worcester Polytechnic Institute 2007Google Scholar
  34. 34.
    Liu X, Zhang C, Li Y, Niemantsverdriet JW, Wagner JB, Hansen TW (2017) ACS Catal 7:4867Google Scholar
  35. 35.
    Zhou X, Mannie GJA, Yin J, Yu X, Weststrate CJ, Wen X, Wu K, Yang Y, Li Y, Niemantsverdriet JW (2018) ACS Catal 8:7326Google Scholar
  36. 36.
    Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao H (2011) Angew Chem Int Ed 50:7403Google Scholar
  37. 37.
    Wang T, Wang S, Luo Q, Li Y-W, Wang J, Beller M, Jiao H (2014) J Phys Chem C 118:4181Google Scholar
  38. 38.
    Plimpton S (1995) J Comput Phys 117:1Google Scholar
  39. 39.
    Liyanage LSI, Kim S-G, Houze J, Kim S, Tschopp MA, Baskes MI, Horstemeyer MF (2014) Phys Rev B 89:094102Google Scholar
  40. 40.
    Berendsen HJC, Postma JPM, Gunsteren WFv, DiNola A, Haak JR (1984) J Chem Phys 81:3684Google Scholar
  41. 41.
    Hasnaoui A, Politano O, Salazar JM, Aral G, Kalia RK, Nakano A, Vashishta P (2005) Surf Sci 579:47Google Scholar
  42. 42.
    Jeon B, Van Overmeere Q, van Duin ACT, Ramanathan S (2013) PCCP 15:1821Google Scholar
  43. 43.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169Google Scholar
  44. 44.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15Google Scholar
  45. 45.
    Blöchl PE (1994) Phys Rev B 50:17953Google Scholar
  46. 46.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758Google Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  48. 48.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188Google Scholar
  49. 49.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616Google Scholar
  50. 50.
    Jónsson H, Mills G, Jacobsen KW (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific, SingaporeGoogle Scholar
  51. 51.
    Zhao S, Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) J Catal 294:47Google Scholar
  52. 52.
    Zhao S, Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2015) Catal Struct React 1:44Google Scholar
  53. 53.
    Eyring H (1935) J Chem Phys 3:107Google Scholar
  54. 54.
    Lu J, Behtash S, Faheem M, Heyden A (2013) J Catal 305:56Google Scholar
  55. 55.
    Ackland GJ, Jones AP (2006) Phys Rev B 73:054104Google Scholar
  56. 56.
    Panzner G, Diekmann W (1985) Surf Sci 160:253Google Scholar
  57. 57.
    Wiltner A, Linsmeier C (2004) Phys Status Solidi (a) 201:881Google Scholar
  58. 58.
    Riikonen S, Krasheninnikov AV, Nieminen RM (2010) Phys Rev B 82:125459Google Scholar
  59. 59.
    Shaik S, Rzepa HS, Hoffmann R (2013) Angew Chem Int Ed 52:3020Google Scholar
  60. 60.
    Li J, Croiset E, Ricardez-Sandoval L (2014) PCCP 16:2954Google Scholar
  61. 61.
    Barteau MA, Madix RJ (1982) Surf Sci 115:355Google Scholar
  62. 62.
    Akita M, Hirakawa H, Tanaka M, Moro-oka Y (1995) J Organomet Chem 485:C14Google Scholar
  63. 63.
    Jensen MP, Phillips DA, Sabat M, Shriver DF (1992) Organometallics 11:1859Google Scholar
  64. 64.
    Wijeyesekera SD, Hoffmann R, Wilker CN (1984) Organometallics 3:962Google Scholar
  65. 65.
    LaPointe AM (2003) Inorg Chim Acta 345:359Google Scholar
  66. 66.
    Pauling L (1947) J Am Chem Soc 69:542Google Scholar
  67. 67.
    Cairns JA, Coad JP, Richards EWT, Stenhouse IA (1980) Nature 288:686Google Scholar
  68. 68.
    Nandula A, Trinh QT, Saeys M, Alexandrova AN (2015) Angew Chem Int Ed 54:5312Google Scholar
  69. 69.
    Tang W, Sanville E, Henkelman G (2009) J Phys 21:084204Google Scholar
  70. 70.
    Le Caer G, Dubois JM, Pijolat M, Perrichon V, Bussiere P (1982) J Phys Chem 86:4799Google Scholar
  71. 71.
    Schliehe C, Yuan J, Glatzel S, Siemensmeyer K, Kiefer K, Giordano C (2012) Chem Mater 24:2716Google Scholar
  72. 72.
    Snovski R, Grinblat J, Sougrati M-T, Jumas J-C, Margel S (2014) J Magn Magn Mater 349:35Google Scholar
  73. 73.
    Huo C-F, Wu B-S, Gao P, Yang Y, Li Y-W, Jiao H (2011) Angew Chem Int Ed 50:7403Google Scholar
  74. 74.
    Wang T, Liu X, Wang S, Huo C, Li Y-W, Wang J, Jiao H (2011) J Phys Chem C 115:22360Google Scholar
  75. 75.
    Winterbottom WL (1967) Acta Metall 15:303Google Scholar
  76. 76.
    Wulff G (1901) Z Kristallogr 34:449Google Scholar
  77. 77.
    Biacchi AJ, Schaak RE (2011) ACS Nano 5:8089Google Scholar
  78. 78.
    Kleibert A, Meiwes-Broer KH, Bansmann J (2009) Phys Rev B 79:125423Google Scholar
  79. 79.
    Kleibert A, Rosellen W, Getzlaff M, Bansmann J (2011) Beilstein J Nanotechnol 2:47Google Scholar
  80. 80.
    Hammer B, Norskov JK (1995) Nature 376:238Google Scholar
  81. 81.
    Hammer B, Nørskov JK, (2000) Advances in catalysis, vol 45. In: Song C (ed). Academic Press, CambridgeGoogle Scholar
  82. 82.
    Chen B, Wang D, Duan X, Liu W, Li Y, Qian G, Yuan W, Holmen A, Zhou X, Chen D (2018) ACS Catal 8:2709Google Scholar
  83. 83.
    Van Der Laan GP, Beenackers AACM (1999) Catal Rev 41:255Google Scholar
  84. 84.
    Schulz H, vein Steen E, Claey M, (1994) Studies in surface science and catalysis, vol 81. In: Curry-Hyde HE, Howe RF (eds). Elsevier, Amsterdam,Google Scholar
  85. 85.
    Huo C-F, Li Y-W, Wang J, Jiao H (2009) J Am Chem Soc 131:14713Google Scholar
  86. 86.
    Pham TH, Qi Y, Yang J, Duan X, Qian G, Zhou X, Chen D, Yuan W (2015) ACS Catal 5:2203Google Scholar
  87. 87.
    Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem C 114:1085Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rui Gao
    • 1
    • 2
    • 3
  • Xingchen Liu
    • 1
    • 2
    • 6
  • Zhi Cao
    • 1
    • 2
    • 4
  • Xing-Wu Liu
    • 1
    • 2
  • Kuan Lu
    • 1
    • 2
  • Ding Ma
    • 5
  • Yong Yang
    • 1
    • 2
  • Yong-Wang Li
    • 1
    • 2
  • Roald Hoffmann
    • 6
    Email author
  • Xiao-Dong Wen
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  2. 2.National Energy Center for Coal to LiquidsBeijingChina
  3. 3.College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotChina
  4. 4.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  5. 5.College of Chemistry and Molecular Engineering, Center for Computational Science and EngineeringPeking UniversityBeijingChina
  6. 6.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations