Skip to main content
Log in

Preferential Oxidation of CO in H2-Rich Stream Over Au/CeO2–NiO Catalysts: Effect of the Preparation Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two methods, viz., the hydrothermal (HT) and co-precipitation (CP) methods, were used to prepare CeO2–NiO composite oxides; with them as the supports, Au/CeO2–NiO catalysts were prepared by the colloidal deposition method and used in the preferential oxidation (PROX) of CO in H2-rich stream. Various characterization measures such as N2 sorption, XRD, TEM, H2-TPR, Raman spectroscopy and XPS were used to clarify the influence of preparation method on the structure of CeO2–NiO support and the performance of Au/CeO2–NiO catalyst. The XPS and TEM results reveal that the CeO2–NiO(HT) support prepared by hydrothermal method displays a uniform rod-like shape and exposes preferentially the (110) and (100) planes of CeO2, whereas the CeO2–NiO(CP) support prepared by co-precipitation method is composed of nanorods and irregular nanoparticles dominated by (111) facets of CeO2. After deposition of gold, both the Au/CeO2–NiO(HT) and Au/CeO2–NiO(CP) catalysts are alike in the state and size distribution of deposited Au nanoparticles. The H2-TPR results indicate that the presence of Au strongly promotes the reduction of CeO2 in the Au/CeO2–NiO catalyst. Raman spectra illustrate that the incorporation of Ni ions into CeO2 remarkably increases the amount of oxygen vacancies in the CeO2–NiO supports, especially in CeO2–NiO(HT) prepared by hydrothermal method, which is beneficial to the dispersion and stabilization of gold species. The structure of CeO2–NiO support and catalytic activity of Au/CeO2–NiO in CO PROX is strongly related to the preparation method; Au/CeO2–NiO(HT) exhibits much higher activity than Au/CeO2–NiO(CP). The larger fraction of (110) and (100) CeO2 facets in CeO2–NiO(HT) can promote the dispersion of gold species, formation of oxygen vacancies and migration of oxygen species, which are effective to enhance the redox capacity and activity of the obtained Au/CeO2–NiO(HT) catalyst for CO PROX in H2-rich stream.

Graphical Abstract

Au supported on CeO2–NiO nanorods prepared by hydrothermal method exhibits much higher catalytic activity for CO PROX in H2-rich stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi G, Xu ZN, Guo GC, Tanaka K, Yuan YZ (2009) Chem Phys Lett 479:128–132

    Article  CAS  Google Scholar 

  2. Laguna OH, Centeno MA, Arzamendi G, Gandía LM, Romero-Sarria F, Odriozola JA (2010) Catal Today 157:155–159

    Article  CAS  Google Scholar 

  3. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  4. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  5. Herzing AA, Kiely CJ, Carley AF, Landon PL, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  6. Guzman J, Gates BC (2004) J Am Chem Soc 126:2672–2673

    Article  CAS  Google Scholar 

  7. Haruta M (2004) J New Mater Electrochem Syst 7:163–172

    CAS  Google Scholar 

  8. Al-Sayari S, Carley AF, Taylor SH, Hutchings GJ (2007) Top Catal 44:123–128

    Article  CAS  Google Scholar 

  9. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192

    Article  CAS  Google Scholar 

  10. Landon P, Ferguson J, Solsona BE, Garcia T, Al-Sayari S, Carley AF, Herzing AA, Kiely CJ, Makkee M, Moulijn JA, Overweg A, Golunski SE, Hutchings GJ (2006) J Mater Chem 16:199–208

    Article  CAS  Google Scholar 

  11. Schumacher B, Denkwitz Y, Plzak V, Kinne M (2004) J Catal 224:449–462

    Article  CAS  Google Scholar 

  12. Valden M, Pak S, Lai X, Goodman DW (1998) Catal Lett 56:7–10

    Article  CAS  Google Scholar 

  13. Cunningham D.A.H., Kobayashi T, Kamijo N, Haruta M (1994) Catal Lett 25:257–264

    Article  CAS  Google Scholar 

  14. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao YL, Gates BC, Corma A (2005) Angew Chem Int Ed 44:4778–4781

    Article  CAS  Google Scholar 

  15. Zhang RB, Lu K, Zong LJ, Tong S, Wang XW, Feng G (2017) Appl Surf Sci 416:183–190

    Article  CAS  Google Scholar 

  16. Longo A, Liotta LF, Pantaleo G, Giannici F, Venezia AM, Martorana A (2012) J Phys Chem C 116:2960–2966

    Article  CAS  Google Scholar 

  17. Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Appl Catal B 144:900–908

    Article  CAS  Google Scholar 

  18. Laguna OH, Romero Sarria F, Centeno MA, Odriozola JA (2010) J Catal 276:360–370

    Article  CAS  Google Scholar 

  19. Zhu HQ, Qin ZF, Shan WJ, Shen WJ, Wang JG (2004) J Catal 225:267–277

    Article  CAS  Google Scholar 

  20. Li SN, Zhu HQ, Qin ZF, Wang GF, Zhang YG, Wu ZW, Li ZK, Chen G, Dong WW, Wu ZH, Zheng LR, Zhang J, Hu TD, Wang JG (2014) Appl Catal B 144:498–506

    Article  CAS  Google Scholar 

  21. Tang CJ, Li JC, Yao XJ, Sun JF, Cao Y, Zhang L, Gao F, Deng Y, Dong L (2015) Appl Catal A 494:77–86

    Article  CAS  Google Scholar 

  22. Trovarelli A (1999) Comments Inorg Chem 20:263–284

    Article  CAS  Google Scholar 

  23. Fornasiero P, Monte RD, Ranga GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168–177

    Article  CAS  Google Scholar 

  24. Ilieva L, Pantaleo G, Ivanov I, Meximova A, Zanella R, Kaszkur Z, Venezia AM, Andreeva D (2010) Catal Today 158:44–55

    Article  CAS  Google Scholar 

  25. Mahammadunnisa Sk, Manoj Kumar Reddy P, Lingaiah N, Subrahmanyam C (2013) Catal Sci Technol 3:730–736

    Article  CAS  Google Scholar 

  26. Shan WJ, Luo MF, Ying PL, Shen WJ, Li C (2003) Appl Catal A 246:1–9

    Article  CAS  Google Scholar 

  27. Wang Y, Zhu AM, Zhang YZ, Au CT, Yang XF, Shi C (2008) Appl Catal B 81:141–149

    Article  CAS  Google Scholar 

  28. Du XJ, Zhang DS, Shi LY, Gao RH, Zhang JP (2012) J Phys Chem C 116:10009–10016

    Article  CAS  Google Scholar 

  29. Liu YM, Wang LC, Chen M, Xu J, Cao Y, He HY, Fan KN (2009) Catal Lett 130:350–354

    Article  CAS  Google Scholar 

  30. Comotti M, Li WC, Spliethoff B, Schüth F (2006) J Am Chem Soc 128:917–924

    Article  CAS  Google Scholar 

  31. Wu ZW, Zhu HQ, Qin ZF, Wang H, Huang LC, Wang JG (2010) Appl Catal B 98:204–212

    Article  CAS  Google Scholar 

  32. Xu S, Yan XB, Wang XL (2006) Fuel 85:2243–2247

    Article  CAS  Google Scholar 

  33. Ponchel A, D’Huysser A, Lamonier C, Jalowieeki-Duhamel L (2000) Phys Chem Chem Phys 2:303–312

    Article  CAS  Google Scholar 

  34. Jalowiecki-Duhamel L, Zarrou H, D’Huysser A (2008) J Hydrogen Energy 33:5527–5534

    Article  CAS  Google Scholar 

  35. Chang LH, Sasirekha N, Chen YW, Wang WJ (2006) Ind Eng Chem Res 45:4927–4935

    Article  CAS  Google Scholar 

  36. Yi G, Yang HW, Li BD, Lin HQ, Tanaka K, Yuan YZ (2010) Catal Today 157:83–88

    Article  CAS  Google Scholar 

  37. Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2006) Catal Today 117:62–68

    Article  CAS  Google Scholar 

  38. Zhang YG, Qin ZF, Wang GF, Zhu HQ, Dong M, Li SN, Wu ZW, Li ZK, Wu ZH, Zhang J, Hu TD, Fan WB, Wang JG (2013) Appl Catal B 129:172–181

    Article  CAS  Google Scholar 

  39. Solsona B, Garcia T, Aylón E, Dejoz AM, Vázquez I, Agouram S, Davies TE, Taylor SH (2011) Chem Eng J 175:271–278

    Article  CAS  Google Scholar 

  40. Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884–2887

    Article  CAS  Google Scholar 

  41. Yao HC, Yu Yao YF (1984) J Catal 86:254–265

    Article  CAS  Google Scholar 

  42. Peng CT, Lia HK, Liaw BJ, Chen YZ (2011) Chem Eng J 172:452–458

    Article  CAS  Google Scholar 

  43. Francisco M.S.P., Mastelaro VR, Nascente P.A.P., Florentino AO (2001) J Phys Chem B 105:10515–10522

    Article  CAS  Google Scholar 

  44. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:11475–11484

    Article  CAS  Google Scholar 

  45. Hernández WY, Centeno MA, Romero-Sarria F, Odriozola JA (2009) J Phys Chem C 113:5629–5635

    Article  Google Scholar 

  46. Qian K, Lv SS, Xiao XY, Sun HX, Lu JQ, Luo MF, Huang WX (2009) J Mol Catal A 306:40–47

    Article  CAS  Google Scholar 

  47. Casaletto MP, Longo A, Venezia AM, Martorana A, Prestianni A (2006) Appl Catal A 302:309–316

    Article  CAS  Google Scholar 

  48. Qian K, Huang WX, Jiang ZQ, Sun HX (2007) J Catal 248:137–141

    Article  CAS  Google Scholar 

  49. Huang XS, Sun H, Wang LC, Liu YM, Fan KN, Cao Y (2009) Appl Catal B 90:224–232

    Article  CAS  Google Scholar 

  50. Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264–267

    Article  Google Scholar 

  51. Światowska J, Lair V, Pereira-Nabais C, Cote G, Marcus P, Chagnes A (2011) Appl Surf Sci 257:9110–9119

    Article  Google Scholar 

  52. Sayle TXT, Parker SC, Sayle DC (2005) Phys Chem Chem Phys 7:2936–2941

    Article  CAS  Google Scholar 

  53. Kirumakki SR, Shpeizer BG, Sagar GV, Chary KVR, Clearfield A (2006) J Catal 242:319–331

    Article  CAS  Google Scholar 

  54. Yu F, Xu XL, Peng HG, Yu HJ, Dai YF, Liu WM, Ying JW, Sun Q, Wang X (2015) Appl Catal A 507:109–118

    Article  CAS  Google Scholar 

  55. Yao XJ, Xiong Y, Zou WX, Zhang L, Wu SG, Gao F, Deng Y, Tang CG, Dong L, Chen Y (2014) Appl Catal B 144:152–165

    Article  CAS  Google Scholar 

  56. Manasilp A, Gulari E (2002) Appl Catal B 37:17–25

    Article  CAS  Google Scholar 

  57. Shodiya T, Schmidt O, Peng W, Hotz N (2013) J Catal 300:63–69

    Article  CAS  Google Scholar 

  58. Panzera G, Modafferi V, Candamano S, Donato A, Frusteri F, Antonucci PL (2004) J Power Sources 135:177–183

    Article  CAS  Google Scholar 

  59. Wang H, Zhu HQ, Qin ZF, Wang GF, Liang FX, Wang JG (2008) Catal Commun 9:1487–1492

    Article  CAS  Google Scholar 

  60. Fiorenza R, Crisafulli C, Scirè S (2016) Int J Hydrogen Energy 44:19390–19398

    Article  Google Scholar 

  61. Lin Q, Qiao B, Huang Y, Li L, Lin J, Liu XY, Wang A, Li WC, Zhang T (2014) Chem Commun 50:2721–2724

    Article  CAS  Google Scholar 

  62. Zhao ZK, Lin XL, Jin RH, Wang GR, Muhammad T (2012) Appl Catal B 115–116:53–62

    Article  Google Scholar 

  63. Avgouropoulos G, Ioannides T, Papadopoulou Ch., Batista J, Hocevar S, Matralis HK (2002) Catal Today 75:157–167

    Article  CAS  Google Scholar 

  64. Kahlich MJ, Gasteiger HA, Behm RJ (1997) J Catal 171:93–105

    Article  CAS  Google Scholar 

  65. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports of National Natural Science Foundation of China (51704240, 51602253, 21603173, 21703276), the Natural Science Foundation of Shaanxi Province of China (2016JQ2030, 2016JQ2017 and 2016JQ5110), and the Special Natural Science Foundation of Science and Technology Bureau of Xi’an City (CXY1531WL03, CXY1531WL22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuna Li or Huaqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, Y., Li, X. et al. Preferential Oxidation of CO in H2-Rich Stream Over Au/CeO2–NiO Catalysts: Effect of the Preparation Method. Catal Lett 148, 328–340 (2018). https://doi.org/10.1007/s10562-017-2231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2231-1

Keywords

Navigation