Catalysis Letters

, Volume 147, Issue 9, pp 2372–2384 | Cite as

Transfer Dehydrogenation of 1-Phenylethanol Over Pd/C Under Mild Conditions: Effect of Reaction Conditions and Optimization of Catalytic Performance

  • Reem AlBilaliEmail author
  • Nikolaos DimitratosEmail author


The catalytic activity of 5 wt% Pd/C has been evaluated using the liquid phase transfer dehydrogenation of 1-phenylethanol as a model reaction. The reaction parameters such as catalyst loading and stirring rate have been optimized to determine the required conditions to carry out the reaction under kinetic regime control. By performing the reaction under different temperatures, the value of apparent activation energy has been determined as being 61 kJ/mol. Furthermore, the influence of thermal treatment of 5 wt% Pd/C catalyst on its catalytic performance for the liquid phase transfer dehydrogenation of 1-phenylethanol has been investigated in a temperature range of 110–200 °C. The results reveal that the catalyst activity is strongly dependent on the ratio between Pd/PdO species. The fresh and used catalysts were characterized using a range of characterization techniques (XRPD, XPS, TEM, SEM-EDX, and BET) in order to investigate structure–activity relationships. The 5 wt% Pd/C exhibit high conversion (90%) and selectivity (91%) toward acetophenone under mild conditions. Moreover, the reusability tests have been carried out, and the results show that the catalyst preserves 80% of its initial catalytic activity after five cycles indicating the high stability of the 5 wt% Pd/C catalyst in the liquid phase transfer dehydrogenation of 1-phenylethanol. The influence of reaction conditions on the catalytic activity is also discussed.

Graphical Abstract


Transfer dehydrogenation of alcohols Palladium Heterogeneous catalysis Nanoparticles 



AlBilali is gratefully acknowledge the University of Dammam for the financial support and Cardiff Catalysis Institute, School of Chemistry at Cardiff University for access to the facilities. The authors are thankful for Mr.Felipe Sanchez for SEM-EDX measurement.

Supplementary material

10562_2017_2140_MOESM1_ESM.docx (7.7 mb)
Supplementary material 1 (DOCX 7858 KB)


  1. 1.
    Arts S, Mombarg, E, Bekkum H, Sheldon, R (1997) Hydrogen peroxide and oxygen in catalytic oxidation of carbohydrates and related compounds. Synthesis 6:597–613CrossRefGoogle Scholar
  2. 2.
    Sheldon R, Arends IWC, Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57:157–166. doi: 10.1016/S0920-5861(99)00317-X CrossRefGoogle Scholar
  3. 3.
    Shi R, Wang F, Tana, Li Y, Huang X, Shen W (2010) A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols. Green Chem 12:108–113. doi: 10.1039/b919807p CrossRefGoogle Scholar
  4. 4.
    Cainelli G, Cardillo G (1984) Oxidation of alcohols. Chromium oxidations in organic chemistry. Springer, Berlin, pp 118–216CrossRefGoogle Scholar
  5. 5.
    Hayashi M, Yamada K, Nakayama S, Hayashi H, Yamazaki S (2000) Environmentally benign oxidation using a palladium catalyst system. Green Chem 2:257–260. doi: 10.1039/b003887n CrossRefGoogle Scholar
  6. 6.
    Zhan B-Z, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60:2917–2935. doi: 10.1016/j.tet.2004.01.043 CrossRefGoogle Scholar
  7. 7.
    Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68:381–388. doi: 10.1002/(SICI)1097-4660(199704)68:4<381:AID-JCTB620>3.0.CO;2-3 CrossRefGoogle Scholar
  8. 8.
    Sankar M, Dimitratos N, Miedziak PJ, Wells P, Kielye C, Hutchings G (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139. doi: 10.1039/c2cs35296f CrossRefGoogle Scholar
  9. 9.
    Sheldon RA, Arends IWCE, Ten Brink GJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781. doi: 10.1021/ar010075n CrossRefGoogle Scholar
  10. 10.
    Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141. doi: 10.1016/S0920-5861(99)00315-6 CrossRefGoogle Scholar
  11. 11.
    Mallat T, Baiker A (1994) Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal Today 19:247–283. doi: 10.1016/0920-5861(94)80187-8 CrossRefGoogle Scholar
  12. 12.
    Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058. doi: 10.1021/cr0200116 CrossRefGoogle Scholar
  13. 13.
    Matsumoto T, Ueno M, Wang N, Kobayashi S (2008) Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem Asian J 3:196–214. doi: 10.1002/asia.200700359 CrossRefGoogle Scholar
  14. 14.
    Bandna, Aggarwal N, Das P (2011) Solid-supported Pd(0): an efficient heterogeneous catalyst for aerobic oxidation of benzyl alcohols into aldehydes and ketones. Tetrahedron Lett 52:4954–4956. doi: 10.1016/j.tetlet.2011.07.073 CrossRefGoogle Scholar
  15. 15.
    Muzart J (2003) Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59:5789–5816. doi: 10.1016/S0040-4020(03)00866-4 CrossRefGoogle Scholar
  16. 16.
    Zaccheria F, Ravasio N, Psaro R, Fusi A (2005) Anaerobic oxidation of non-activated secondary alcohols over Cu/Al2O3. Chem Commun. doi: 10.1039/b413634a Google Scholar
  17. 17.
    Fang W, Chen J, Zhang Q, Deng W, Wang Ye (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: Studies on support and gold size effects. Chem Eur J 17:1247–1256. doi: 10.1002/chem.201002469 CrossRefGoogle Scholar
  18. 18.
    Kim JW, Koike T, Kotani M, Yamaguchi K, Mizuno N (2008) Synthetic scope of Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions: an application to reduction of allylic alcohols by a sequential process of isomerization/meerwein-ponndorf-verley-iype reduction. Chem Eur J 14:4104–4109. doi: 10.1002/chem.200701917 CrossRefGoogle Scholar
  19. 19.
    Karvembua R, Prabhakaranb R, Senthilkumarb K, Viswanathamurthic P, Natarajanb K (2005) Ru/Al2O3 -catalyzed transfer dehydrogenation of alcohols. React Kinet Mech Catal Lett 86:211–216. doi: 10.1007/s11144-005-0314-2 CrossRefGoogle Scholar
  20. 20.
    Hayashi M, Kawabata H, Yamada K (1999) Metal-catalyzed transformation of d-glucal to optically active furan. Chem Commun 11:965–966. doi: 10.1039/A902510C CrossRefGoogle Scholar
  21. 21.
    Hayashi M, Yamada K, Nakayama S (2000) Catalytic hydrogen-transfer reactions of benzylic and allylic alcohols with palladium compounds in the presence of vinyl acetate or under an ethylene atmosphere. J Chem Soc Perkin Trans 1:1501–1503. doi: 10.1039/b001385o CrossRefGoogle Scholar
  22. 22.
    Baiker A, Ferri D, Bürgi T (2002) In situ ATR–IR study of the adsorption of cinchonidine on Pd/Al2O3: differences and similarities with adsorption on Pt/Al2O3. J Catal 210:160–170. doi: 10.1006/jcat.2002.3660 CrossRefGoogle Scholar
  23. 23.
    Ferri D, Baiker A (2009) Advances in infrared spectroscopy of catalytic solid-liquid interfaces: the case of selective alcohol oxidation. Top Catal 52:1323–1333. doi: 10.1007/s11244-009-9310-5 CrossRefGoogle Scholar
  24. 24.
    Grunwaldt JD, Caravati M, Baiker A (2006) Oxidic or metallic palladium: which is the active phase in Pd-catalyzed aerobic alcohol oxidation. J Phys Chem B 110:25586–25589. doi: 10.1021/jp066949a CrossRefGoogle Scholar
  25. 25.
    Keresszegi C, Bürgi T, Mallat T, Baiker A (2002) On the role of oxygen in the liquid-phase aerobic oxidation of alcohols on palladium. J Catal 211:244–251. doi: 10.1016/S0021-9517(02)93723-1 CrossRefGoogle Scholar
  26. 26.
    Keresszegi C, Grunwaldt J-D, Mallat T, Baiker A (2004) In situ EXAFS study on the oxidation state of Pd/Al2O3 and Bi-Pd/Al2O3 during the liquid-phase oxidation of 1-phenylethanol. J Catal 222:268–280. doi: 10.1016/j.jcat.2003.10.013 CrossRefGoogle Scholar
  27. 27.
    Keresszegi C, Mallat T, Baiker A (2001) Selective transfer dehydrogenation of aromatic alcohols on supported palladium. New J Chem 25:1163–1167. doi: 10.1039/b102463a CrossRefGoogle Scholar
  28. 28.
    Keresszegi C, Mallat T, Grunwaldt JD, Baiker A (2004) A simple discrimination of the promoter effect in alcohol oxidation and dehydrogenation over platinum and palladium. J Catal 225:138–146. doi: 10.1016/j.jcat.2004.04.002 CrossRefGoogle Scholar
  29. 29.
    Meier DM, Urakawa A, Baiker A (2009) In situ PM-IRRAS study of liquid-phase benzyl alcohol oxidation on palladium. J Phys Chem C 113:21849–21855. doi: 10.1021/jp908071m CrossRefGoogle Scholar
  30. 30.
    Wang F, Shi R, Liu Z, Shang P, Pang X, Shen S, Feng Z, Li C, Shen W (2013) Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3. ACS Catal 3:890–894. doi: 10.1021/ic402567h CrossRefGoogle Scholar
  31. 31.
    Zaccheria F, Ravasio N, Psaro R, Fusi A (2006) Synthetic scope of alcohol transfer dehydrogenation catalyzed by Cu/Al2O3: a new metallic catalyst with unusual selectivity. Chem Eur J 12:6426–6431. doi: 10.1002/chem.200501619 CrossRefGoogle Scholar
  32. 32.
    Xu C, Shen P kang, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531. doi: 10.1016/j.jpowsour.2006.10.071 CrossRefGoogle Scholar
  33. 33.
    Datye AK, Bravo J, Nelson TR, Atanasovaa P, Lyubovskyb M, Pfefferle L (2000) Catalyst microstructure and methane oxidation reactivity during the Pd↔PdO transformation on alumina supports. Appl Catal A 198:179–196. doi: 10.1016/S0926-860X(99)00512-8 CrossRefGoogle Scholar
  34. 34.
    Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807. doi: 10.1007/s11244-009-9237-x CrossRefGoogle Scholar
  35. 35.
    Napoleão A, Furtunato D, Segura E, César J, Fernando R, Hammerc P, Vitório E, Oliveira A, Linardib M, Coelho M (2013) Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim Acta 111:455–465. doi: 10.1016/j.electacta.2013.08.021 CrossRefGoogle Scholar
  36. 36.
    Chen GZ, Wu SJ, Liu HL, Jiang H, Li Y (2013) Palladium supported on an acidic metal-organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235. doi: 10.1039/C2gc36618e CrossRefGoogle Scholar
  37. 37.
    Rahul R, Singh RK, Bera B, Devivaraprasad R, Neergat M (2015) The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media. Phys Chem Chem Phys 17:15146–15155. doi: 10.1039/C5CP00692A CrossRefGoogle Scholar
  38. 38.
    Teng I, Chen K, Hsu H (2016) Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum. Jpn J Appl Phys 55:06GF04. doi: 10.7567/JJAP.55.06GF04 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Science CollegeUniversity of DammamDammamSaudi Arabia
  2. 2.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations