Advertisement

Catalysis Letters

, Volume 147, Issue 6, pp 1422–1433 | Cite as

The Evaluation of Synthesis Route Impact on Structure, Morphology and LT-WGS Activity of Cu/ZnO/Al2O3 catalysts

  • Paweł KowalikEmail author
  • Katarzyna Antoniak-Jurak
  • Wiesław Próchniak
  • Paweł Wiercioch
  • Marcin Konkol
  • Robert Bicki
  • Kamila Michalska
  • Michał Walczak
Article

Abstract

Four different techniques (co-precipitation, urea homogeneous precipitation, citrate sol–gel auto-combustion, solid state formate assisted) were used in preparation of a series of Cu/ZnO/Al2O3 catalysts, having a nominal composition: (Cu/Zn)mol = 2.5 and (Cu + Zn)/Almol = 3. The catalytic materials were investigated by various methods. The activity of the CuZnAl catalysts in the LT-WGS process was compared. The results revealed that the co-precipitation technique and subsequent thermal decomposition provided the Cu/ZnO/Al2O3 catalyst with the higher specific surface area and more advantageous surface morphology. It was shown that co-precipitation of hydroxycarbonate precursors at constant pH and their subsequent thermal treatment provided the most active WGS catalyst compared to other techniques.

Graphical Abstract

Keywords

Water-gas shift Cu/ZnO/Al2O3 catalyst Co-precipitation Homogeneous precipitation Sol-gel auto-combustion Solid state formate method 

Supplementary material

10562_2017_2048_MOESM1_ESM.docx (200 kb)
Supplementary material 1 (DOCX 200 KB)

References

  1. 1.
    Appl M (1999) Ammonia—principles and industrial practice; ISBN 3-527-29593-3. Wiley, HobokenGoogle Scholar
  2. 2.
    Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes. Wiley, HobokenGoogle Scholar
  3. 3.
    Behrens M (2009) J Catal 237:24–29CrossRefGoogle Scholar
  4. 4.
    Li J-L, Zhang X-G, Inui T (1996) Appl Catal A 147:23–33CrossRefGoogle Scholar
  5. 5.
    Kaluza S, Behrens M, Schiefenhövel N, Kniep B, Fischer R, Schlögl R, Muhler M (2011) ChemCatChem 3:189–199CrossRefGoogle Scholar
  6. 6.
    Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Fadilah Idris N, Abd Hamid SB, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Appl Catal A 392:93–102CrossRefGoogle Scholar
  7. 7.
    Baltes C, Vukojević S, Schüth F (2008) J Catal 258:334–344CrossRefGoogle Scholar
  8. 8.
    Simson G, Prasetyo E, Reiner S, Hinrichsen O (2013) Appl Catal A 450:1–12CrossRefGoogle Scholar
  9. 9.
    Guo XJ, Li LM, Liu SM, Bao GL, Hou WH (2007) J Fuel Chem Technol 35: 329–333CrossRefGoogle Scholar
  10. 10.
    Budiman A, Ridwan M, Min Kim S, Choi J-W, Won Yoon Ch, Ha J-M, Jin Suh D, Suh Y-W (2013) Appl Catal A 462–463:220–226CrossRefGoogle Scholar
  11. 11.
    Kowalik P, Konkol M, Antoniak K, Próchniak W, Wiercioch P (2014) J Mol Catal A 392:127–133CrossRefGoogle Scholar
  12. 12.
    Schur M, Bems B, Dassenoy A, Kassatkine I, Urban J, Wilmes H, Hinrichsen O, Muhler M, Schlögl R (2003) Angew Chem Int Ed 42:3815–3817CrossRefGoogle Scholar
  13. 13.
    Find J, Moser WR (2003) J Mat Sci 38:1917–1924CrossRefGoogle Scholar
  14. 14.
    Allahyari S, Haghighi M, Ebadi A, Hosseinzadeh S, Gavam Saeedi H (2014) React Kin Mech Catal 112:101–116CrossRefGoogle Scholar
  15. 15.
    Kondrat SA, Smith PJ, Wells PP, Chater PA, Carter JH, Morgan DJ, Fiordaliso EM, Warner JB, Davies TE, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Rosseinsky MJ, Hutchings GJ (2016) Nature 531:83CrossRefGoogle Scholar
  16. 16.
    Smith P, Kondrat S, Carter J, Chater P, Bartley J, Taylor S, Spencer M, Hutchings G (2017) ChemCatChem. doi: 10.1002/cctc.201601603 Google Scholar
  17. 17.
    Pajonk GM (1991) Appl Catal A 72:217–266CrossRefGoogle Scholar
  18. 18.
    Ning W, Shen H, Liu H (2001) Appl Catal A 211:153–157CrossRefGoogle Scholar
  19. 19.
    Behrens M, Kißner S, Girsgdies F, Kasatkin I, Hermerschmidt F, Mette K, Ruland H, Muhler M, Schlögl R (2011) Chem Commun 47:1701–1703CrossRefGoogle Scholar
  20. 20.
    Prieto G, de Jong KP, de Jongh PE (2013) Catal Today 215:142–151CrossRefGoogle Scholar
  21. 21.
    Atake I, Nishida K, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2007) J Mol Catal A 275:130–138CrossRefGoogle Scholar
  22. 22.
    Soler-Illia GJ, Candal RJ, Regazzoni AE, Blesa MA (1997) Chem Mater 9:184–191CrossRefGoogle Scholar
  23. 23.
    Fu W, Bao Z, Ding W, Chou K, Li Q (2011) Catal Comm 12:505–509CrossRefGoogle Scholar
  24. 24.
    Fernández Y, Menéndeza JA, Arenillas A, Fuente E, Peng JH, Zhang ZB, Li W, Zhang ZY (2009) Solid State Ion 180:1372–1378CrossRefGoogle Scholar
  25. 25.
    Shishido T, Yamamoto M, Li D, Tian Y, Morioka H, Honda M, Sano T, Takehir K (2006) Appl Catal A 303:62–71CrossRefGoogle Scholar
  26. 26.
    Shi L, Ch. Zeng, Jin Y, Wang T, Tsubaki N (2012) Catal Sci Technol 2:2569–2577CrossRefGoogle Scholar
  27. 27.
    Guo X, Mao D, Lu G, Wang S, Wu G (2011) Catal Com 12:1095–1098CrossRefGoogle Scholar
  28. 28.
    Lei H, Nie R, Fei J, Hou Z (2012) J Zhejiang Univ-Sci A (Appl Phys Eng) 13:395–406CrossRefGoogle Scholar
  29. 29.
    Guo X, Mao D, Lu G, Wang S, Wu G (2010) J Catal 271:178–185CrossRefGoogle Scholar
  30. 30.
    Wang L-C, Liu Y-M, Chen M, Cao Y, He H-Y, Wu G-S, Dai WL, Fan K-N (2007) J Catal 246:193–204CrossRefGoogle Scholar
  31. 31.
    Hong Z-S, Cao Y, Deng J-F, Fan K-N. (2002) Catal Lett 82:37–44CrossRefGoogle Scholar
  32. 32.
    Shi L, Shen W, Yang G, Fan X, Jin Y, Zeng C, Matsuda K, Tsubaki N (2013) J Catal 302:83–90CrossRefGoogle Scholar
  33. 33.
    Shi L, Tan YS, Tsubaki N (2012) ChemCatChem 4:863–871CrossRefGoogle Scholar
  34. 34.
    Monti DM, Baiker A (1983) J Catal 83:323–335CrossRefGoogle Scholar
  35. 35.
    Denise B, Sneeden RPA, Beguin B, Cherifi O (1987) Appl Catal A 30:353–363CrossRefGoogle Scholar
  36. 36.
    Bond GC, Namijo SN (1998) J Catal 118:507–510CrossRefGoogle Scholar
  37. 37.
    Kowalik P, Próchniak W, Konkol M, Borowiecki T (2012) Appl Catal A 423–424:15–20CrossRefGoogle Scholar
  38. 38.
    Jun K-W, Shen W-J, Rama Rao KS, Lee K-W (1998) Appl Catal A 174:231–238CrossRefGoogle Scholar
  39. 39.
    Suh Y-W, Rhee H-K (2002) Korean J Chem Eng 19(1):17–19CrossRefGoogle Scholar
  40. 40.
    Sagata K, Imazu N, Yahiro H (2013) Catal Today 201:145–150CrossRefGoogle Scholar
  41. 41.
    Pernicone N, Fantinel T, Baldan C, Riello P, Pinna F (2003) Appl Catal A 240:199–206CrossRefGoogle Scholar
  42. 42.
    Gervasini A, Bennici S (2005) Appl Catal A 281:199–205CrossRefGoogle Scholar
  43. 43.
    Evans JW, Wainwright MS, Bridgewater AJ, Young DJ (1983) Appl Catal 7:75–83CrossRefGoogle Scholar
  44. 44.
    Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) J Catal 103:79–86CrossRefGoogle Scholar
  45. 45.
    Dvorak B, Pasek J (1970) J Catal 18:108–114CrossRefGoogle Scholar
  46. 46.
    Sato S, Takahashi R, Sodesawa T, Yuma K, Obata Y (2000) J Catal 196:195–199CrossRefGoogle Scholar
  47. 47.
    Kuhl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Chem Eur J 20:1–11CrossRefGoogle Scholar
  48. 48.
    Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schlogl R (2013) J Am Chem Soc 135:6061–6068CrossRefGoogle Scholar
  49. 49.
    Jung H, Yang D-R, Joo O-S, Jung K-D (2010) Bull Korean Chem Soc 31(5):1241–1246CrossRefGoogle Scholar
  50. 50.
    Prieto G, Zecević J, Friedrich H, de Jong KP, de Jongh PE (2013) Nat Mater 12:34–39CrossRefGoogle Scholar
  51. 51.
    Li D, Cai Y, Ding Y, Li R, Lu M, Jiang L (2015) Int J Hydr Energy 40:10016–10025CrossRefGoogle Scholar
  52. 52.
    Brehens M (2015) Catal Today 246:46–54CrossRefGoogle Scholar
  53. 53.
    Kuhl S, Schumann J, Kasatkin I, Havecker M, Schlogl R, Brehens M (2015) Catal Today 246:92–100CrossRefGoogle Scholar
  54. 54.
    Jeong C, Park J, Bae JW, Suh Y-W (2014) Catal Comm 54:1–5CrossRefGoogle Scholar
  55. 55.
    Lei H, Hou Z, Xie J (2016) Fuel 164:191–198CrossRefGoogle Scholar
  56. 56.
    Shi L, Tao K, Yang R, Meng F, Xing C, Tsubaki N (2011) Appl Catal A 401:46–55CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Paweł Kowalik
    • 1
    Email author
  • Katarzyna Antoniak-Jurak
    • 1
  • Wiesław Próchniak
    • 1
  • Paweł Wiercioch
    • 1
  • Marcin Konkol
    • 1
  • Robert Bicki
    • 1
  • Kamila Michalska
    • 1
  • Michał Walczak
    • 2
  1. 1.New Chemical Syntheses InstitutePuławyPoland
  2. 2.Faculty of ChemistryUniversity of Maria Curie-SklodowskaLublinPoland

Personalised recommendations