Catalysis Letters

, Volume 147, Issue 5, pp 1243–1251 | Cite as

Microspherical ReS2 as a High-Performance Hydrodesulfurization Catalyst

  • J. A. Aliaga
  • T. N. Zepeda
  • B. N. Pawelec
  • J. F. Araya
  • J. Antúnez-García
  • M. H. Farías
  • S. Fuentes
  • D. Galván
  • G. Alonso-Núñez
  • G. González


An unsupported microspherical ReS2 catalyst, consisting in self-assembled nano-layers, was evaluated in the hydrodesulfurization (HDS) of 3-methylthiophene showing an excellent catalytic activity. The samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. These techniques revealed that the rhenium disulfide layers are confined to a 3D hierarchical structure with different stacking, slab size and bending, according to the annealing temperature (400 or 800 °C). The presence of a defect-rich structure in the microspheres, with short and randomly-orientated ReS2 slabs, results in the exposure of additional edge sites, which improve the catalytic performance of this material. This microspherical ReS2 composite, with good HDS performance, is a promising catalyst for the desulfurization of fuel oils; the solvothermal reaction conditions are also useful to tune and create exotic morphologies for the design of new ReS2 catalysts.

Graphical Abstract


Rhenium disulfide Hidrodesulfurization Heterogeneous catalysis Solvothermal synthesis 



The authors gratefully thank CONICYT (FONDECYT GRANT 1131112), Núcleo Milenio de Magnetismo, CEDENNA, CONACYT (Projects 174689 and 117373), PAPIIT (Project IN104714-3), Supercómputo-UNAM (LANCAD-UNAM-DGTIC-041)  and CONICYT Postdoctoral Project 3170761 for the different financial supports. We are also very grateful to David A. Domínguez for valuable technical help obtaining the XPS spectra.

Supplementary material

10562_2017_2024_MOESM1_ESM.doc (148 kb)
Supplementary material 1 (DOC 147 KB)


  1. 1.
    Sepúlveda C, García R, Reyes P, Ghampson I, Fierro J, Laurenti D, Vrinat M, Escalona N (2014) Appl Catal A 475:427CrossRefGoogle Scholar
  2. 2.
    Lui H, Xu B, Lim JM, Yin J, Miao F, Duan CG, Wan XG (2016) Phys Chem Chem Phys 18:14223Google Scholar
  3. 3.
    Ho T, Shen Q, McConnachie J, Kliewer C (2010) J Catal 276:114CrossRefGoogle Scholar
  4. 4.
    Yang L, Lu S, Wang H, Shao Q, Liao F, Shao M (2017) Electrochim Acta 228:268CrossRefGoogle Scholar
  5. 5.
    Al-Dulaimi N, Lewis DJ, Zhong XL, Malik MA, O’Brien P (2016) J Mater Chem C 4:2312CrossRefGoogle Scholar
  6. 6.
    Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao C (2015) Dalton Trans 44:16399CrossRefGoogle Scholar
  7. 7.
    Jacobsen CJ, Törnqvist E, Topsøe H (1999) Catal Lett 63:179CrossRefGoogle Scholar
  8. 8.
    Harris S, Chianelli R (1984) J Catal 86:400CrossRefGoogle Scholar
  9. 9.
    Wang L, Sofer Z, Luxa J, Sedmidubský D, Ambrosi A, Pumera M (2016) Electrochem Commun 63:39CrossRefGoogle Scholar
  10. 10.
    Chianelli R (1984) Cat Rev Sci Eng 26:361CrossRefGoogle Scholar
  11. 11.
    Wildervanck JC, Jellineck F (1971) J Less Common Met 24:73CrossRefGoogle Scholar
  12. 12.
    Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang YS, Ho CH, Yan J, Ogletree DF, Aloni S, Ji J, Li S, Li J, Peeters FM, Wu J (2014) Nat Commun 5:3252CrossRefGoogle Scholar
  13. 13.
    Hafeez M, Gan L, Li H, Ma Y, Zhai T (2016) Adv Funct Mater 26:4551CrossRefGoogle Scholar
  14. 14.
    Yella A, Therese HA, Zink N, Panthöfer M, Tremel W (2008) ChemMater 20:3587Google Scholar
  15. 15.
    Tu W, Denizot B (2007) J Colloid Interface Sci 310:167CrossRefGoogle Scholar
  16. 16.
    Tang N, Tu W (2009) J MagnMagn Mater 321:3311CrossRefGoogle Scholar
  17. 17.
    Brorson M, Hansen TW, Jacobsen CJ (2002) J Am Chem Soc 124: 11582CrossRefGoogle Scholar
  18. 18.
    Aliaga JA, Araya JF, Lozano H, Benavente E, Alonso-Nuñez G, González G (2015) Mater Chem Phys 151:372CrossRefGoogle Scholar
  19. 19.
    Qi F, Cheng Y, Zheng B, He J, Li Q, Wang X, Yu B, Lin J, zhang J, Li P, Zhang W (2017) J Mater Sci 52:3622CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Tan S, Mendes RG, Sun Z, Chen Y, Kong X, Xue Y, Rümmeli MH, Wu X, Chen S (2016) Adv Mater 28:2616CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Wang W, Kong X, Mendes RG, Fang L, Xue Y, Xiao Y, Rümmeli MH, Chen MH, Fu L (2016) J Am Chem Soc 138:11101CrossRefGoogle Scholar
  22. 22.
    Mdleleni MM, Hyeon T, Suslick KS (1998)J Am Chem Soc 120:6189CrossRefGoogle Scholar
  23. 23.
    Zhu G, Wang W, Wu K, Tan S, Tan L, Yang Y (2016) Ind Eng Chem Res 55:12173CrossRefGoogle Scholar
  24. 24.
    Farag H, El-Hendawy ANA, Sakanishi K, Kishida M, Mochida I (2009) Appl Catal B 91:189CrossRefGoogle Scholar
  25. 25.
    Farag H, Al-Megrem H (2009) J Colloid Interface Sci 332:425CrossRefGoogle Scholar
  26. 26.
    Lamfers HJ, Meetsma A, Wiegers G, De Boer J (1996) J Alloy Compd 241:34CrossRefGoogle Scholar
  27. 27.
    Wu Z, Wang D, Sun A (2010) J Mater Sci 45:182CrossRefGoogle Scholar
  28. 28.
    Aliaga JA, Alonso-Núñez G, Zepeda T, Araya JF, Rubio PF, Bedolla-Valdez Z, Paraguay-Delgado F, Farías M, Fuentes S, González G (2016) J Non-Cryst Solids 447:29CrossRefGoogle Scholar
  29. 29.
    Escalona N, Yates M, Avila P, Lopez Agudo A, Fierro J, Ojeda J, Gil Llambias F (2003) Appl Catal A 240:151CrossRefGoogle Scholar
  30. 30.
    Bouyssieres L, Flores L, Poblete J, Gil Llambias F (1986) Appl Catal 23:271CrossRefGoogle Scholar
  31. 31.
    Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G (2012) Appl Catal A 29:92CrossRefGoogle Scholar
  32. 32.
    Guzmán MA, Huirache-Acuña R, Loricera CV, Hernandez JR, Díaz de León JN, De los Reyes JA, Pawelec B (2013) Fuel 103:321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • J. A. Aliaga
    • 1
    • 2
  • T. N. Zepeda
    • 3
  • B. N. Pawelec
    • 4
  • J. F. Araya
    • 5
  • J. Antúnez-García
    • 6
  • M. H. Farías
    • 3
  • S. Fuentes
    • 3
  • D. Galván
    • 3
  • G. Alonso-Núñez
    • 3
  • G. González
    • 7
    • 8
  1. 1.Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi)Universidad Tecnológica MetropolitanaSantiagoChile
  2. 2.Departamento de QuímicaUniversidad Tecnológica MetropolitanaSantiagoChile
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  4. 4.Instituto de Catálisis y Petroleoquímica, CSICMadridSpain
  5. 5.Universidad de AtacamaCopiapóChile
  6. 6.Centro de Enseñanza Técnica y Superior, Centro de Ingeniería AplicadaAv. CETYS UniversidadTijuanaMexico
  7. 7.Departmento de Química, Facultad de CienciasUniversidad de ChileSantiagoChile
  8. 8.Center for the Development of Nanocience and Nanotechnology, CEDENNASantiagoChile

Personalised recommendations