Catalysis Letters

, Volume 147, Issue 4, pp 865–879

Catalyst Deactivation During One-Step Dimethyl Ether Synthesis from Synthesis Gas

  • Farbod Dadgar
  • Rune Myrstad
  • Peter Pfeifer
  • Anders Holmen
  • Hilde J. Venvik
Article
  • 276 Downloads

Abstract

Catalysts for direct synthesis of dimethyl ether (DME) from synthesis gas should essentially contain two functions, i.e., methanol synthesis and methanol dehydration. In the present work, the deactivation of both functions of hybrid catalysts during direct DME synthesis under industrially relevant conditions has been investigated with special focus on the influence of each reaction step on the deactivation of the catalyst function corresponding to the other step. A physical mixture of a Cu–Zn-based methanol synthesis catalyst and a ZSM-5 methanol dehydration catalyst was used. The metallic catalyst appears to deactivate due to Cu sintering, with no apparent effect from the methanol dehydration step under the conditions applied. The acid catalyst deactivates due to accumulation of hydrocarbon species formed in its pores. Synthesis gas composition, i.e., \(\text{{H}}_{2}\)/CO ratio and \(\text{{CO}}_{2}\)-content (which directly affects partial pressure of water), seems to influence the zeolite deactivation.

Graphical Abstract

Keywords

DME Methanol synthesis Methanol dehydration Deactivation Hybrid catalyst H-ZSM-5 Cu/ZnO/\(\text{{Al}}_{2}\text{{O}}_{3}\) 

References

  1. 1.
    Fleisch TH, Basu A, Sills RA (2012) Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond. J Nat Gas Sci Eng 9:94–107CrossRefGoogle Scholar
  2. 2.
    Marchionna M, Patrini R, Sanfilippo D, Migliavacca G (2008) Fundamental investigations on dimethyl ether (DME) as LPG substitute or make-up for domestic uses. Fuel Process Technol 89:1255–1261CrossRefGoogle Scholar
  3. 3.
    Anggarani R, Wibowo CS, Rulianto D (2014) Application of dimethyl ether as LPG substitution for household stove. Energy Procedia 47:227–234CrossRefGoogle Scholar
  4. 4.
    Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030CrossRefGoogle Scholar
  5. 5.
    Park SH, Lee CS (2014) Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers Manag 86:848–863CrossRefGoogle Scholar
  6. 6.
    Chang C, Silvestri A (1975) Conversion of synthesis gas to gasoline. US Patent 3,894,102Google Scholar
  7. 7.
    Pagani G (1978) Process for the production of dimethyl ether. US Patent 4,098,809Google Scholar
  8. 8.
    Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Synthesis of methanol. Part 1. Catalysts and kinetics. Appl Catal 36:1–65CrossRefGoogle Scholar
  9. 9.
    Kung HH (1992) Deactivation of methanol synthesis catalysts—a review. Catal Today 11:443–453CrossRefGoogle Scholar
  10. 10.
    Twigg MV, Spencer MS (2001) Deactivation of supported copper metal catalysts for hydrogenation reactions. Appl Catal A 212:161–174CrossRefGoogle Scholar
  11. 11.
    Twigg MV, Spencer MS (2003) Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Top Catal 22:191–203CrossRefGoogle Scholar
  12. 12.
    Bøgild-Hansen J, Højlund-Nielsen PE (2008) Methanol synthesis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 2920–2949Google Scholar
  13. 13.
    Rasmussen DB, Janssens TVW, Temel B, Bligaard T, Hinnemann B, Helveg S, Sehested J (2012) The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT. J Catal 293:205–214CrossRefGoogle Scholar
  14. 14.
    Prieto G, Zecevic J, Friedrich H, de Jong KP, de Jongh PE (2013a) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39CrossRefGoogle Scholar
  15. 15.
    Prieto G, Meeldijk JD, de Jong KP, de Jongh PE (2013b) Interplay between pore size and nanoparticle spatial distribution: consequences for the stability of CuZn/\({\text {SiO}}_{2}\) methanol synthesis catalysts. J Catal 303:31–40CrossRefGoogle Scholar
  16. 16.
    Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlogl R, Hinrichsen O (2015) Kinetics of deactivation on Cu/ZnO/\({{\text {Al}}_{2}{\text {O}}_3}\) methanol synthesis catalysts. Appl Catal A 502:262–270CrossRefGoogle Scholar
  17. 17.
    Xu MT, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl Catal A 149:289–301CrossRefGoogle Scholar
  18. 18.
    Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts. Appl Catal A 276:251–255CrossRefGoogle Scholar
  19. 19.
    Raoof F, Taghizadeh M, Eliassi A, Yaripour F (2008) Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over \(\gamma\)-alumina. Fuel 87:2967–2971CrossRefGoogle Scholar
  20. 20.
    Aguayo AT, Erena J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and \({\text {CO}}_{2}\). Catal Today 106:265–270CrossRefGoogle Scholar
  21. 21.
    Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831CrossRefGoogle Scholar
  22. 22.
    Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite HZSM-5: on the origin of the olefinic species. J Catal 249:195–207CrossRefGoogle Scholar
  23. 23.
    Weitkamp J, Puppe L (1999) Catalysis and zeolites: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Guisnet M, Ribeiro F (2011) Deactivation and regeneration of zeolite catalysts. Imperial College Press, LondonCrossRefGoogle Scholar
  25. 25.
    Schulz H, Barth D, Siwei z (1991a) Deactivation of HZSM-5 zeolite during methanol conversion: kinetic probing of pore-architecture and acidic properties. Stud Surf Sci Catal 68:783–790CrossRefGoogle Scholar
  26. 26.
    Schulz H, Siwei Z, Kusterer H (1991b) Autocatalysis, retardation, reanimation and deactivation during methanol conversion on zeolite HZSM-5. Stud Surf Sci Catal 60:281–290CrossRefGoogle Scholar
  27. 27.
    Schulz H, Lau K, Claeys M (1995) Kinetic regimes of zeolite deactivation and reanimation. Appl Catal A 132:29–40CrossRefGoogle Scholar
  28. 28.
    Schulz H, Wei M (1999) Deactivation and thermal regeneration of zeolite HZSM-5 for methanol conversion at low temperature (260–290\(^{\circ }\)C). Microporous Mesoporous Mater 29:205–218CrossRefGoogle Scholar
  29. 29.
    Schulz H, Wei M (2004) Regimes of methanol conversion on zeolites. Stud Surf Sci Catal 154 C:2133–2142CrossRefGoogle Scholar
  30. 30.
    Schulz H (2010) “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG-processes. Catal Today 154:183–194CrossRefGoogle Scholar
  31. 31.
    Schulz H (2011) Time resolved selectivity for unsteady regimes in catalytic petroleum chemistry. Catal Today 178:151–156CrossRefGoogle Scholar
  32. 32.
    Schulz H, Wei M (2014) Pools and constraints in methanol conversion to olefins and fuels on zeolite HZSM-5. Top Catal 57:683–692CrossRefGoogle Scholar
  33. 33.
    Luan YS, Xu HY, Yu CY, Li WZ, Hou SF (2008) Effects and control of steam in the systems of methanol and DME synthesis from syngas over Cu-based catalysts. Catal Lett 125:271–276CrossRefGoogle Scholar
  34. 34.
    Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from a \({\text {CO}}_{2}\)-rich feed and from a CO-rich feed. Appl Catal A 218:235–240CrossRefGoogle Scholar
  35. 35.
    Sun JT, Metcalfe IS, Sahibzada M (1999) Deactivation of Cu/ZnO/\({\text {Al}}_{2}{\text {O}}_{3}\) methanol synthesis catalyst by sintering. Ind Eng Chem Res 38:3868–3872CrossRefGoogle Scholar
  36. 36.
    Lee S (1990) Methanol synthesis technology. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Ordomsky VV, Cai M, Sushkevich V, Moldovan S, Ersen O, Lancelot C, Valtchev V, Khodakov AY (2014) The role of external acid sites of ZSM-5 in deactivation of hybrid CuZnAl/ZSM-5 catalyst for direct dimethyl ether synthesis from syngas. Appl Catal A 486:266–275CrossRefGoogle Scholar
  38. 38.
    Tartamella T, Lee SG (1996) Role of in-situ produced methanol on the catalyst deactivation in the liquid phase methanol synthesis process. Fuel Sci Technol Int 14:713–727CrossRefGoogle Scholar
  39. 39.
    Campbell JS (1970) Influences of catalyst formulation and poisoning on the activity and die-off of low temperature shift catalysts. Ind Eng Chem Process Des Dev 9:588–595CrossRefGoogle Scholar
  40. 40.
    Barbosa FSR, Ruiz VSO, Monteiro JLF, de Avillez RR, Borges LEP, Appel LG (2008) The deactivation modes of Cu/ZnO/\({\text {Al}}_{2}{\text {O}}_{3}\) and HZSM-5 physical mixture in the one-step DME synthesis. Catal Lett 126:173–178CrossRefGoogle Scholar
  41. 41.
    Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Effect of operating conditions on the synthesis of dimethyl ether over a CuO–ZnO-\({\text {Al}}_{2}{\text {O}}_{3}\)/NaHZSM-5 bifunctional catalyst. Catal Today 107–108:467–473CrossRefGoogle Scholar
  42. 42.
    Peng X, Toseland B, Underwood R (1997) A novel mechanism of catalyst deactivation in liquid phase synthesis gas-to-DME reactions. In: Bartholomew C, Fuentes G (eds) Studies in surface science and catalysis, vol 111. Elsevier, Amsterdam, pp 175–182Google Scholar
  43. 43.
    García-Trenco A, Vidal-Moya A, Martínez A (2012) Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. Catal Today 179:43–51CrossRefGoogle Scholar
  44. 44.
    García-Trenco A, Martínez A (2012) Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: new insights into the role of zeolite acidity. Appl Catal A 411:170–179CrossRefGoogle Scholar
  45. 45.
    García-Trenco A, Martínez A (2013) The influence of zeolite surface-aluminum species on the deactivation of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Catal Today 227:144–153CrossRefGoogle Scholar
  46. 46.
    García-Trenco A, Valencia S, Martínez A (2013) The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Appl Catal A 468:102–111CrossRefGoogle Scholar
  47. 47.
    García-Trenco A, Martínez A (2015) A rational strategy for preparing Cu–ZnO/H-ZSM-5 hybrid catalysts with enhanced stability during the one-step conversion of syngas to dimethyl ether (DME). Appl Catal A 493:40–49CrossRefGoogle Scholar
  48. 48.
    Bakhtiary-Davijany H, Dadgar F, Hayer F, Phan XK, Myrstad R, Venvik HJ, Pfeifer P, Holmen A (2012) Analysis of external and internal mass transfer at low Reynolds numbers in a multiple-slit packed bed microstructured reactor for synthesis of methanol from syngas. Ind Eng Chem Res 51:13574–13579CrossRefGoogle Scholar
  49. 49.
    Bakhtiary-Davijany H, Hayer F, Phan XK, Myrstad R, Pfeifer P, Venvik HJ, Holmen A (2011a) Performance of a multi-slit packed bed microstructured reactor in the synthesis of methanol: comparison with a laboratory fixed-bed reactor. Chem Eng Sci 66:6350–6357CrossRefGoogle Scholar
  50. 50.
    Bakhtiary-Davijany H, Hayer F, Phan XK, Myrstad R, Venvik HJ, Pfeifer P, Holmen A (2011b) Characteristics of an integrated micro packed bed reactor-heat exchanger for methanol synthesis from syngas. Chem Eng J 167:496–503CrossRefGoogle Scholar
  51. 51.
    Hayer F, Bakhtiary-Davijany H, Myrstad R, Holmen A, Pfeifer P, Venvik HJ (2013) Characteristics of integrated micro packed bed reactor-heat exchanger configurations in the direct synthesis of dimethyl ether. Chem Eng Process Process Intensif 70:77–85CrossRefGoogle Scholar
  52. 52.
    Hayer F, Bakhtiary-Davijany H, Myrstad R, Holmen A, Pfeifer P, Venvik HJ (2011a) Synthesis of dimethyl ether from syngas in a microchannel reactor: simulation and experimental study. Chem Eng J 167:610–615CrossRefGoogle Scholar
  53. 53.
    Hayer F, Bakhtiary-Davijany H, Myrstad R, Holmen A, Pfeifer P, Venvik HJ (2011b) Modeling and simulation of an integrated micro packed bed reactor-heat exchanger configuration for direct dimethyl ether synthesis. Top Catal 54:817–827CrossRefGoogle Scholar
  54. 54.
    Myrstad R, Eri S, Pfeifer P, Rytter E, Holmen A (2009) Fischer–Tropsch synthesis in a microstructured reactor. Catal Today 147:S301–S304CrossRefGoogle Scholar
  55. 55.
    Erena J, Sierra I, Azar M, Gayubo AG, Aguayo AT (2008) Deactivation of a CuO–ZnO–\({\text {Al}}_{2}{\text {O}}_{3}\)/\(\gamma\)-\({\text {Al}}_{2}{\text {O}}_{3}\) catalyst in the synthesis of dimethyl ether. Ind Eng Chem Res 47:2238–2247CrossRefGoogle Scholar
  56. 56.
    Sierra I, Erena J, Aguayo AT, Olazar M, Bilbao J (2010) Deactivation kinetics for direct dimethyl ether synthesis on a CuO-ZnO-\({\text {Al}}_{2}{\text {O}}_{3}\)/\(\gamma\)-\({\text {Al}}_{2}{\text {O}}_{3}\) catalyst. Ind Eng Chem Res 49:481–489CrossRefGoogle Scholar
  57. 57.
    Sierra I, Erena J, Aguayo AT, Arandes JM, Olazar M, Bilbao J (2011) Co-feeding water to attenuate deactivation of the catalyst metallic function (CuO–ZnO–\({\text {Al}}_{2}{\text {O}}_{3}\)) by coke in the direct synthesis of dimethyl ether. Appl Catal B 106:167–173Google Scholar
  58. 58.
    Sierra I, Erena J, Aguayo AT, Arandes JM, Bilbao J (2010) Regeneration of CuO–ZnO–\({\text {Al}}_{2}{\text {O}}_{3}\)/\(\gamma\)-\({\text {Al}}_{2}{\text {O}}_{3}\) catalyst in the direct synthesis of dimethyl ether. Appl Catal B 94:108–116CrossRefGoogle Scholar
  59. 59.
    Huber F, Yu ZX, Logdberg S, Ronning M, Chen D, Venvik H, Holmen A (2006) Remarks on the passivation of reduced Cu-, Ni-, Fe-, Co-based catalysts. Catal Lett 110:211–220CrossRefGoogle Scholar
  60. 60.
    Sahibzada M, Metcalfe IS, Chadwick D (1998) Methanol synthesis from CO/\({\text {CO}}_{2}\)/\({\text {H}}_{2}\) over Cu/ZnO/\({\text {Al}}_{2}{\text {O}}_{3}\) at differential and finite conversions. J Catal 174:111–118CrossRefGoogle Scholar
  61. 61.
    Kuechen C, Hoffmann U (1993) Investigation of simultaneous reaction of carbon-monoxide and carbon-dioxide with hydrogen on a commercial copper–zinc oxide catalyst. Chem Eng Sci 48:3767–3776CrossRefGoogle Scholar
  62. 62.
    Waugh KC (2012) Methanol synthesis. Catal Lett 142:1153–1166CrossRefGoogle Scholar
  63. 63.
    Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2055CrossRefGoogle Scholar
  64. 64.
    Vedage GA, Pitchai R, Herman RG, Klier K (1984) Water promotion and identification of intermediates in methanol synthesis. In: Proceedings of the 8th international congress on catalysis, 1984, vol II, p 47–59Google Scholar
  65. 65.
    Jiang S, Hwang JS, Jin TH, Cai TX, Cho W, Baek YS, Park SE (2004) Dehydration of methanol to dimethyl ether over ZSM-5 zeolite. Bull Korean Chem Soc 25:185–189CrossRefGoogle Scholar
  66. 66.
    Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J Am Chem Soc 124:3844–3845CrossRefGoogle Scholar
  67. 67.
    Dadgar F, Myrstad R, Pfeifer P, Holmen A, Venvik HJ (2015) Direct dimethyl ether synthesis from synthesis gas: the influence of methanol dehydration on methanol synthesis reaction. Catal Today 270:76–84CrossRefGoogle Scholar
  68. 68.
    Figoli NS, Hillar SA, Parera JM (1971) Poisoning and nature of alumina surface in dehydration of methanol. J Catal 20:230–237CrossRefGoogle Scholar
  69. 69.
    Pines H, Manassen J (1966) The mechanism of dehydration of alcohols over alumina catalysts. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 16. Academic Press, New York, pp 49–93Google Scholar
  70. 70.
    Jain JR, Pillai CN (1967) Catalytic dehydration of alcohols over alumina mechanism of ether formation. J Catal 9:322–330CrossRefGoogle Scholar
  71. 71.
    Schiffino RS, Merrill RP (1993) A mechanistic study of the methanol dehydration reaction on gamma-alumina catalyst. J Phys Chem 97:6425–6435CrossRefGoogle Scholar
  72. 72.
    Ono Y, Mori T (1981) Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. J Chem Soc Faraday Trans I 77:2209–2221CrossRefGoogle Scholar
  73. 73.
    Forester TR, Howe RF (1987) In situ FTIR studies of methanol and dimethyl ether in ZSM-5. J Am Chem Soc 109:5076–5082CrossRefGoogle Scholar
  74. 74.
    Highfield JG, Moffat JB (1985) Elucidation of the mechanism of dehydration of methanol over 12-tungstophosphoric acid using infrared photoacoustic-spectroscopy. J Catal 95:108–119CrossRefGoogle Scholar
  75. 75.
    Qinwei Z, Jingfa D (1989) Studies on the properties of water in and conversion of methanol into dimethyl ether on \({\text {H}}_{3}{\text {PW}}_{12}{\text {O}}_{40}\). J Catal 116:298–302CrossRefGoogle Scholar
  76. 76.
    Kubelkova L, Novakova J, Nedomova K (1990) Reactivity of surface species on zeolites in methanol conversion. J Catal 124:441–450CrossRefGoogle Scholar
  77. 77.
    Lu WZ, Teng LH, Xiao WD (2004) Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chem Eng Sci 59:5455–5464CrossRefGoogle Scholar
  78. 78.
    Bandiera J, Naccache C (1991) Kinetics of methanol dehydration on dealuminated H-mordenite—model with acid and basic active-centers. Appl Catal 69:139–148CrossRefGoogle Scholar
  79. 79.
    Ha KS, Lee YJ, Bae JW, Kim YW, Woo MH, Kim HS, Park MJ, Jun KW (2011) New reaction pathways and kinetic parameter estimation for methanol dehydration over modified ZSM-5 catalysts. Appl Catal A 395:95–106CrossRefGoogle Scholar
  80. 80.
    Blaszkowski SR, van Santen RA (1996) The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons. J Am Chem Soc 118:5152–5153CrossRefGoogle Scholar
  81. 81.
    Blaszkowski SR, van Santen RA (1997) Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. J Phys Chem B 101:2292–2305CrossRefGoogle Scholar
  82. 82.
    Carr RT, Neurock M, Iglesia E (2011) Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. J Catal 278:78–93CrossRefGoogle Scholar
  83. 83.
    Jun KW, Lee HS, Roh HS, Park SE (2003) Highly water-enhanced H-ZSM-5 catalysts for dehydration of methanol to dimethyl ether. Bull Korean Chem Soc 24:106–108CrossRefGoogle Scholar
  84. 84.
    Trimm DL (1997) Deactivation and regeneration. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH, Weinheim, pp 1263–1282CrossRefGoogle Scholar
  85. 85.
    Cheng W (1989) Regeneration of methanol dissociation catalysts. US Patent 4,855,267, 8 Aug 1989Google Scholar
  86. 86.
    Lee S, Ashok S, Kulik C (1991) Process for in-situ regeneration of aged methanol catalysts. US Patent 5,004,717, 2 April 1991Google Scholar
  87. 87.
    Lee BG, Lee S, Kulik CJ (1991b) Regeneration of liquid-phase methanol synthesis catalyst. Fuel Sci Technol Int 9:587–612CrossRefGoogle Scholar
  88. 88.
    Lee SG, Sardesai A (2005) Liquid phase methanol and dimethyl ether synthesis from syngas. Top Catal 32:197–207CrossRefGoogle Scholar
  89. 89.
    Luan YS, Xu HY, Yu CY, Li WZ, Hou SF (2007) In-situ regeneration mechanisms of hybrid catalysts in the one-step synthesis of dimethyl ether from syngas. Catal Lett 115:23–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Farbod Dadgar
    • 1
  • Rune Myrstad
    • 2
  • Peter Pfeifer
    • 3
  • Anders Holmen
    • 1
  • Hilde J. Venvik
    • 1
  1. 1.Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway
  3. 3.Institute for Micro Process Engineering (IMVT)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations