Catalysis Letters

, Volume 146, Issue 12, pp 2566–2573 | Cite as

Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol

  • Steven Pellizzeri
  • Isaac A. Jones
  • Hieu A. Doan
  • Randall Q. Snurr
  • Rachel B. Getman


We demonstrate the use of gas phase metal hydroxide clusters to identify descriptors and generate scaling relationships for predicting catalytic performances of porphyrin-supported metal hydroxide catalysts. Using the gas phase clusters for these purposes takes just 5 % of the time that would have been required if the porphyrin-supported models had been used.

Graphical Abstract


Nanocluster catalysts Heterogeneous catalysis Kinetic modeling Computational catalysis 



This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702. Simulations were performed on the Palmetto Supercomputer Cluster, which is maintained by the Cyberinfrastructure Technology Integration Group at Clemson University. We thank Andrew Samstag, who is an undergraduate research assistant in our group, for his help in setting up the simulations for the porphyrin supported catalysts. We would also like to thank Pere Miró (University of North Florida) for helpful discussions about setting up the QM/QM ONIOM model for the porphyrin supported catalysts.

Supplementary material

10562_2016_1890_MOESM1_ESM.pdf (981 kb)
Supplementary material 1 (PDF 980 KB)


  1. 1.
    Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A Chem 145:1–44CrossRefGoogle Scholar
  2. 2.
    Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:492–531CrossRefGoogle Scholar
  3. 3.
    Wannakao S, Maihom T, Probst M et al (2016) Porous materials as a platform for highly uniform single-atom catalysts: tuning the electronic structure for the low-temperature oxidation of carbon monoxide. J Phys Chem C 120:19686–19697CrossRefGoogle Scholar
  4. 4.
    Bailey DC, Langer SH (1981) Immobilized transition-metal carbonyls and related catalysts. Chem Rev 81:109–148CrossRefGoogle Scholar
  5. 5.
    Alexeev OS, Gates BC (2003) Supported bimetallic cluster catalysts. Ind Eng Chem Res 42:1571–1587CrossRefGoogle Scholar
  6. 6.
    Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522CrossRefGoogle Scholar
  7. 7.
    Hlatky GG (2000) Heterogeneous single-site catalysts for olefin polymerization. Chem Rev 100:1347–1376CrossRefGoogle Scholar
  8. 8.
    Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew Chem Int Ed Engl 44:2336–2354CrossRefGoogle Scholar
  9. 9.
    Yang X-F, Wang A, Qiao B et al (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748CrossRefGoogle Scholar
  10. 10.
    Thomas JM, Raja R (2006) The advantages and future potential of single-site heterogeneous catalysts. Top Catal 40:3–17CrossRefGoogle Scholar
  11. 11.
    Qiao B, Wang A, Yang X et al (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641CrossRefGoogle Scholar
  12. 12.
    Flytzani-Stephanopoulos M, Gates BC (2012) Atomically dispersed supported metal catalysts. Annu Rev Chem Biomol Eng 3:545–574CrossRefGoogle Scholar
  13. 13.
    Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the marcellus shale: challenges and potential opportunities. Environ Sci Technol 44:5679–5684CrossRefGoogle Scholar
  14. 14.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46CrossRefGoogle Scholar
  15. 15.
    Norskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108:937–943.CrossRefGoogle Scholar
  16. 16.
    Nørskov JK, Bligaard T, Logadottir A et al (2002) Universality in heterogeneous catalysis. J Catal 209:275–278CrossRefGoogle Scholar
  17. 17.
    Grabow LC, Studt F, Abild-Pedersen F et al (2011) Descriptor-based analysis applied to HCN synthesis from NH3 and CH4. Angew Chemie 123:4697–4701.CrossRefGoogle Scholar
  18. 18.
    Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  19. 19.
    Jones G, Jakobsen J, Shim S et al (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259:147–160CrossRefGoogle Scholar
  20. 20.
    Andersson M, Bligaard T, Kustov A et al (2006) Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J Catal 239:501–506CrossRefGoogle Scholar
  21. 21.
    Grabow LC (2014) Computational catalyst screening. In: Computational catalysis. The Royal Society of Chemistry, pp 1–58Google Scholar
  22. 22.
    Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:16105CrossRefGoogle Scholar
  23. 23.
    Greeley J (2016) Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng 7:605–635CrossRefGoogle Scholar
  24. 24.
    Montemore MM, Medlin JW (2014) Scaling relations between adsorption energies for computational screening and design of catalysts. Catal Sci Technol 4:3748–3761CrossRefGoogle Scholar
  25. 25.
    Wang C-M, Brogaard RY, Weckhuysen BM et al (2014) Reactivity descriptor in solid acid catalysis: predicting turnover frequencies for propene methylation in zeotypes. J Phys Chem Lett 5:1516–1521CrossRefGoogle Scholar
  26. 26.
    Wang C-M, Chuan-Ming W, Brogaard RY et al (2015) Transition-state scaling relations in zeolite catalysis: influence of framework topology and acid-site reactivity. Catal Sci Technol 5:2814–2820CrossRefGoogle Scholar
  27. 27.
    Bukowski BC, Jeffrey G (2016) Scaling relationships for molecular adsorption and dissociation in Lewis acid zeolites. J Phys Chem C 120:6714–6722CrossRefGoogle Scholar
  28. 28.
    Wang Y, Ying W, Montoya JH et al (2015) Scaling relationships for binding energies of transition metal complexes. Catal Lett 146:304–308CrossRefGoogle Scholar
  29. 29.
    Schröder D, Schwarz H (1990) FeO+ activates methane. Angew Chemie Int Ed Eng 29:1433–1434CrossRefGoogle Scholar
  30. 30.
    Schröder D, Schwarz H, Clemmer DE et al (1997) Activation of hydrogen and methane by thermalized FeO+ in the gas phase as studied by multiple mass spectrometric techniques. Int J Mass Spectrom Ion Proc 161:175–191CrossRefGoogle Scholar
  31. 31.
    Harvey JN, Diefenbach M, Schröder D, Schwarz H (1999) Oxidation properties of the early transition-metal dioxide cations MO2+ (MT = Ti, V, Zr, Nb) in the gas-phase. Int J Mass Spectrom 182–183:85–97CrossRefGoogle Scholar
  32. 32.
    Hammond C, Conrad S, Hermans I (2012) Oxidative methane upgrading. ChemSusChem 5:1668–1686CrossRefGoogle Scholar
  33. 33.
    Woertink JS, Smeets PJ, Groothaert MH et al (2009) A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci 106:18908–18913CrossRefGoogle Scholar
  34. 34.
    Grundner S, Markovits MAC, Li G et al (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:7546CrossRefGoogle Scholar
  35. 35.
    Liu C-C, Mou C-Y, Yu SS-F, Chan SI (2016) Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure. Energy. Environ Sci 9:1361–1374Google Scholar
  36. 36.
    Avila JR, Emery JD, Pellin MJ et al (2016) Porphyrins as templates for site-selective atomic layer deposition: vapor metalation and in situ monitoring of island growth. ACS Appl Mater Interfaces 8:19853–19859Google Scholar
  37. 37.
    Feng D, Gu Z-Y, Li J-R et al (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chemie Int Ed 51:10307–10310CrossRefGoogle Scholar
  38. 38.
    Rahimi R, Rahmatollah R, Sara S, Fard EH (2015) Fluorine-doped TiO2 nanoparticles sensitized by tetra(4-carboxyphenyl)porphyrin and zinc tetra(4-carboxyphenyl)porphyrin: preparation, characterization, and evaluation of photocatalytic activity. Environ Prog Sustain Energy 34:1341–1348CrossRefGoogle Scholar
  39. 39.
    O’Neill BJ, Jackson DHK, Lee J et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825CrossRefGoogle Scholar
  40. 40.
    George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRefGoogle Scholar
  41. 41.
    Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01 Gaussian, Inc., WallingfordGoogle Scholar
  43. 43.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  44. 44.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  45. 45.
    Chung LW, Sameera WMC, Ramozzi R et al (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101CrossRefGoogle Scholar
  47. 47.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868Google Scholar
  48. 48.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396Google Scholar
  49. 49.
    Maseras F (1998) Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study. New J Chem 22:322–327Google Scholar
  50. 50.
    Foresman JB, Frisch A, Gaussian I (1996) Exploring chemistry with electronic structure methods. Gaussian, Inc., WallingfordGoogle Scholar
  51. 51.
    Bauernschmitt R, Ahlrichs R (1996) Stability analysis for solutions of the closed shell Kohn–Sham equation. J Chem Phys 104:9047–9052Google Scholar
  52. 52.
    Seeger R, Pople JA (1977) Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory. J Chem Phys 66:3045CrossRefGoogle Scholar
  53. 53.
    Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory Comput 2:835–839CrossRefGoogle Scholar
  54. 54.
    Medford AJ, Shi C, Hoffmann MJ et al (2015) CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal Lett 145:794–807CrossRefGoogle Scholar
  55. 55.
    Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  56. 56.
    Yamamoto N, Koga N, Nagaoka M (2012) Ferryl–Oxo species produced from fenton’s reagent via a two-step pathway: minimum free-energy path analysis. J Phys Chem B 116:14178–14182CrossRefGoogle Scholar
  57. 57.
    Verma P, Vogiatzis KD, Planas N et al (2015) Mechanism of oxidation of ethane to ethanol at iron(IV)–Oxo sites in magnesium-diluted Fe 2 (dobdc). J Am Chem Soc 137:5770–5781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Steven Pellizzeri
    • 1
  • Isaac A. Jones
    • 1
  • Hieu A. Doan
    • 2
  • Randall Q. Snurr
    • 2
  • Rachel B. Getman
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringClemson UniversityClemsonUSA
  2. 2.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations