Advertisement

Catalysis Letters

, Volume 147, Issue 2, pp 442–452 | Cite as

Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

  • Jian Dou
  • Yu Tang
  • Luan Nguyen
  • Xiao Tong
  • Prem S. Thapa
  • Franklin Feng Tao
Article

Abstract

Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene with molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. The correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.

Graphical Abstract

Keywords

Oxidation processes and reactions Cyclohexene Catalysis Gold Liquid phase 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012573. JD appreciates the help from B. Zugic and  M. Personick in preparing the nanoporous Au–Ag samples.

Supplementary material

10562_2016_1883_MOESM1_ESM.docx (6 mb)
Supplementary material 1 (DOCX 6112 KB)

References

  1. 1.
    Okumura M, Haruta M (2015) Catal Today 259:81–86CrossRefGoogle Scholar
  2. 2.
    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  3. 3.
    Xu BJ, Madix RJ, Friend CM (2010) J Am Chem Soc 132:16571–16580CrossRefGoogle Scholar
  4. 4.
    Deng XY, Friend CM (2005) J Am Chem Soc 127:17178–17179CrossRefGoogle Scholar
  5. 5.
    Duan HM, Xu CX (2015) J Catal 332:31–37CrossRefGoogle Scholar
  6. 6.
    Yi Z, Luo JS, Tan XL, Yi Y, Yao WT, Kang XL, Ye X, Zhu WK, Duan T, Yi YG, Tang YJ (2015) Sci Rep 5:16137CrossRefGoogle Scholar
  7. 7.
    Khristosov MK, Bloch L, Burghammer M, Kauffmann Y, Katsman A, Pokroy B (2015) Nat Commun 6:8841CrossRefGoogle Scholar
  8. 8.
    Biener J, Biener MM, Madix RJ, Friend CM (2015) ACS Catal 5:6263–6270CrossRefGoogle Scholar
  9. 9.
    Wang LC, Stowers KJ, Zugic B, Personick ML, Biener MM, Biener J, Friend CM, Madix RJ (2015) J Catal 329:78–86CrossRefGoogle Scholar
  10. 10.
    Wang P, Tang XQ, Tang J, Pei Y (2015) J Phys Chem C 119:10345–10354CrossRefGoogle Scholar
  11. 11.
    Qiu H-J, Xu H-T, Liu L, Wang Y (2015) Nanoscale 7:386–400CrossRefGoogle Scholar
  12. 12.
    Ho HE, Ishikawa Y, Asao N, Yamamoto Y, Jin T (2015) Chem Commun 51:12764–12767CrossRefGoogle Scholar
  13. 13.
    Qadir K, B. T. P. Quynh, Lee H, Moon SY, Kim SH, Park JY (2015) Chem Commun 51:9620–9623CrossRefGoogle Scholar
  14. 14.
    Yan XJ, Xiong HY, Bai QG, Frenzel J, Si CH, Chen XT, Eggeler G, Zhang ZH (2015) RSC Adv 5:19409–19417CrossRefGoogle Scholar
  15. 15.
    Wichmann A, Bäumer M, Wittstock A (2015) ChemCatChem 7:70–74CrossRefGoogle Scholar
  16. 16.
    Shi JJ, Schaefer A, Wichmann A, Murshed MM, Gesing TM, Wittstock A, Bäumer M (2014) J Phys Chem C 118:29270–29277CrossRefGoogle Scholar
  17. 17.
    Zhang QF, Li YK, Zhang L, Chen L, Liu Y, Lu Y (2014) J Catal 317:54–61CrossRefGoogle Scholar
  18. 18.
    Zhang ZQ, Li HW, Zhang F, Wu YH, Guo Z, Zhou LQ, Li JD (2014) Langmuir 30:2648–2659CrossRefGoogle Scholar
  19. 19.
    Wittstock A, Bäumer M (2014) Acc Chem Res 47:731–739CrossRefGoogle Scholar
  20. 20.
    Zhang XM, Ding Y (2013) Catal Sci Technol 3:2862–2868CrossRefGoogle Scholar
  21. 21.
    Xiao S, Xiao F, Hu Y, Yuan SL, Wang S, Qian LH, Liu YQ (2014) Sci Rep 4:4370Google Scholar
  22. 22.
    Wang RY, Liu JG, Liu P, Bi XX, Yan XL, Wang WX, Ge XB, Chen MW, Ding Y (2014) Chem Sci 5:403–409CrossRefGoogle Scholar
  23. 23.
    Hsieh Y-T, Sun I-W (2014) Chem Commun 50:246–248CrossRefGoogle Scholar
  24. 24.
    Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y (2007) J Am Chem Soc, 129:42–43CrossRefGoogle Scholar
  25. 25.
    Zielasek V, Jürgens B, Schulz C, Biener J, Biener MM, Hamza AV, Bäumer M (2006) Angew Chem Int Ed 45:8241–8244CrossRefGoogle Scholar
  26. 26.
    Déronzier T, Morfin F, Lomello M, Rousset J-L (2014) J Catal 311:221–229CrossRefGoogle Scholar
  27. 27.
    Wang LC, Zhong Y, Widmann D, Weissmüller J, Behm RJ (2012) ChemCatChem 4:251–259CrossRefGoogle Scholar
  28. 28.
    Moskaleva LV, Röhe S, Wittstock A, Zielasek V, Klüner T, Neyman KM, Bäumer M (2011) Phys Chem Chem Phys 13:4529–4539CrossRefGoogle Scholar
  29. 29.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2011) Chem Commun 47:8403–8405CrossRefGoogle Scholar
  30. 30.
    Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319–322CrossRefGoogle Scholar
  31. 31.
    Hereijgers BPC, Parton RF, Weckhuysen BM (2011) ACS Catal 1:1183–1192CrossRefGoogle Scholar
  32. 32.
    Mukherjee S, Samanta S, Roy BC, Bhaumik A (2006) Appl Catal A 301:79–88CrossRefGoogle Scholar
  33. 33.
    Lapisardi G, Chiker F, Launay F, Nogier J-P, Bonardet J-L (2004) Catal Commun 5:277–281CrossRefGoogle Scholar
  34. 34.
    Noyori R, Aoki M, Sato K (2003) Chem. Commun 1977–1986Google Scholar
  35. 35.
    Lane BS, Burgess K (2003) Chem Rev 103:2457–2473CrossRefGoogle Scholar
  36. 36.
    Barf GA, Sheldon RA (1995) J Mol Catal A 102:23–39CrossRefGoogle Scholar
  37. 37.
    Mohebbi S, Boghaei DM, Sarvestani AH, Salimi A (2005) Appl Catal A 278:263–267CrossRefGoogle Scholar
  38. 38.
    Kuznetsov ML, B. G. M. Rocha, A. J. L. Pombeiro, Shul’pin GB (2015) ACS Catal 5:3823–3835CrossRefGoogle Scholar
  39. 39.
    Escande V, Petit E, Garoux L, Boulanger C, Grison C (2015) ACS Sustainable Chem Eng 3:2704–2715CrossRefGoogle Scholar
  40. 40.
    Gupta S, Vinod CP, Jagadeesan D (2015) RSC Adv 5:92371–92377CrossRefGoogle Scholar
  41. 41.
    Liu M, Wang XZ, Chen YQ, Dai LY (2015) RSC Adv 5:61481–61485CrossRefGoogle Scholar
  42. 42.
    Rahman S, Farooqui SA, Rai A, Kumar R, Santra C, Prabhakaran VC, Bhadu GR, Sen D, Mazumder S, Maity S, Sinha AK, Chowdhury B (2015) RSC Adv 5:46850–46860CrossRefGoogle Scholar
  43. 43.
    Li ZF, Wu SJ, Ding H, Zheng DF, Hu J, Wang X, Huo QS, Guan JQ, Kan QB (2013) New J Chem 37:1561–1568CrossRefGoogle Scholar
  44. 44.
    Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA (2013) J Catal 298:61–69CrossRefGoogle Scholar
  45. 45.
    Alvarez CS, García F, Humphrey SM, Hopkins AD, Kowenicki RA, McPartlin M, Layfield RA, Raja R, Rogers MC, Woods AD, Wright DS (2005) Chem Commun 2:198–200CrossRefGoogle Scholar
  46. 46.
    Chimentão RJ, Kirm I, Medina F, Rodríguez X, Cesteros Y, Salagre P, Sueiras JE (2004) Chem Commun 846–847Google Scholar
  47. 47.
    Monnier JR (2001) Appl Catal A 221:73–91CrossRefGoogle Scholar
  48. 48.
    Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132–1135CrossRefGoogle Scholar
  49. 49.
    Turner M, Golovko VB, O. P. H. Vaughan, Abdulkin P, Berenguer-Murcia A, Tikhov MS, B. F. G. Johnson, Lambert RM (2008) Nature 454:981–984CrossRefGoogle Scholar
  50. 50.
    Fang YY, Chen YZ, Li XZ, Zhou XC, Li J, Tang WJ, Huang JW, Jin J, Ma JT (2014) J Mol Catal 392:16–21CrossRefGoogle Scholar
  51. 51.
    Donoeva BG, Ovoshchnikov DS, Golovko VB (2013) ACS Catal 3:2986–2991CrossRefGoogle Scholar
  52. 52.
    Wang L, Wang H, Hapala P, Zhu LF, Ren LM, Meng XJ, Lewis JP, Xiao FS (2011) J Catal 281:30–39CrossRefGoogle Scholar
  53. 53.
    Yao Y, Zhang XM, Peng J, Yang QH (2015) Chem Commun 51:3750–3753CrossRefGoogle Scholar
  54. 54.
    Alshammari H, Miedziak PJ, Davies TE, Willock DJ, Knight DW, Hutchings GJ (2014) Catal Sci Technol 4:908–911CrossRefGoogle Scholar
  55. 55.
    Personick ML, Zugic B, Biener MM, Biener J, Madix RJ, Friend CM (2015) ACS Catal 5:4237–4241CrossRefGoogle Scholar
  56. 56.
    Mair RD, Graupner AJ (1964) Anal Chem 36:194–204CrossRefGoogle Scholar
  57. 57.
    Fujita T, Tokunaga T, Zhang L, Li DW, Chen LY, Arai S, Yamamoto Y, Hirata A, Tanaka N, Ding Y, Chen MW (2014) Nano Lett 14:1172–1177CrossRefGoogle Scholar
  58. 58.
    Biener MM, Biener J, Wichmann A, Wittstock A, Baumann TF, Bäumer M, Hamza AV (2011) Nano Lett 11:3085–3090CrossRefGoogle Scholar
  59. 59.
    Li R, Sieradzki K (1992) Phys Rev Lett 68:1168–1171CrossRefGoogle Scholar
  60. 60.
    Tao F (2012) Chem Commun 48:3812–3814CrossRefGoogle Scholar
  61. 61.
    Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Science 297:1533–1536CrossRefGoogle Scholar
  62. 62.
    Tsai H, Hu E, Perng K, Chen M, Wu J-C, Chang Y-S (2003) Surf Sci 537:L447–L450CrossRefGoogle Scholar
  63. 63.
    Waterhouse GIN, Bowmaker GA, Metson JB (2001) Appl Surf Sci 183:191–204CrossRefGoogle Scholar
  64. 64.
    Weaver JF, Hoflund GB (1994) J Phys Chem 98:8519–8524CrossRefGoogle Scholar
  65. 65.
    Schaefer A, Ragazzon D, Wittstock A, Walle LE, Borg A, Bäumer M, Sandell A (2012) J Phys Chem C 116:4564–4571CrossRefGoogle Scholar
  66. 66.
    Kim KS, Winograd N (1975) Chem Phys Lett 30:91–95CrossRefGoogle Scholar
  67. 67.
    King DE (1995) J Vac Sci Technol A 13:1247–1253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jian Dou
    • 1
  • Yu Tang
    • 1
  • Luan Nguyen
    • 1
  • Xiao Tong
    • 2
  • Prem S. Thapa
    • 3
  • Franklin Feng Tao
    • 1
    • 4
  1. 1.Department of Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA
  2. 2.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  3. 3.Microscopy and Analytical Imaging LaboratoryUniversity of KansasLawrenceUSA
  4. 4.Department of ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations