Catalysis Letters

, Volume 146, Issue 11, pp 2278–2291 | Cite as

Aerobic Oxidation of Cyclic Amines to Lactams Catalyzed by Ceria-Supported Nanogold

  • Taiwo O. Dairo
  • Nicholas C. Nelson
  • Igor I. Slowing
  • Robert J. Angelici
  • L. Keith WooEmail author


The oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.

Graphical Abstract


Lactams Nanogold Ceria Cyclic amines Oxidation Amine oxidation 



This research was partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (Contract No. DE-AC02-07CH11358). The authors thank Evonik Degussa Corporation for a generous donation of Aerosil 200.

Supplementary material

10562_2016_1834_MOESM1_ESM.pdf (2.9 mb)
Supplementary material 1 (PDF 2931 KB)


  1. 1.
    Harreus A, Backes R, Eichler J-O, Feuerhake R, Jakel C, Mahn U, Vogelsang R (2011) 2-Pyrrolidone. In: Ullmann’s encyclopedia of industrial chemistry, pp 1–7Google Scholar
  2. 2.
    Dahlhoff G, Niederer JPM, Hoelderich WF (2001) Catal Rev 43:381–441CrossRefGoogle Scholar
  3. 3.
    Estes L, Schweizer M (2011) Fibers, 4. polyamide fibers. In: Ullmann’s encyclopedia of industrial chemistry, pp 1–17Google Scholar
  4. 4.
    Ledoux A, Kuigwa LS, Framery E, Andrioletti B (2015) Green Chem 17:3251–3254CrossRefGoogle Scholar
  5. 5.
    Tanielyan SK, More SR, Augustine RL, Tosukhowong T, Ozmeral C, Roffi K, Shmorhun M, Glas J (2014) Top Catal 57:1582–1587CrossRefGoogle Scholar
  6. 6.
    White JF, Holladay JE, Zacher AA, Frye JG, Werpy TA (2014) Top Catal 57:1325–1334CrossRefGoogle Scholar
  7. 7.
    Hashimoto K (2000) Prog Polym Sci 25:1411–1462CrossRefGoogle Scholar
  8. 8.
    Haaf F, Sanner A, Straub F (1985) Polym J 17:143–152CrossRefGoogle Scholar
  9. 9.
    Ye LW, Shu C, Gagosz F (2014) Org Biomol Chem 12:1833–1845CrossRefGoogle Scholar
  10. 10.
    Trost BM (1989) Angew Chem Int Ed Engl 28:1173–1192CrossRefGoogle Scholar
  11. 11.
    Janecki T (2013) β-Lactams. In: Natural lactones and lactams: synthesis, occurrence and biological activity. Wiley, Weinheim, pp 101–106CrossRefGoogle Scholar
  12. 12.
    Udipi K, Dave RS, Kruse RL, Stebbins LR (1997) Polymer 38:927–938CrossRefGoogle Scholar
  13. 13.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1179–1184CrossRefGoogle Scholar
  14. 14.
    Alger M (1997) Polymer science dictionary, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  15. 15.
    Ravve A (2000) Principles of polymer chemistry, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  16. 16.
    Kammerer C, Prestat G, Madec D, Poli G (2014) Acc Chem Res 47:3439–3447CrossRefGoogle Scholar
  17. 17.
    Ritz J, Fuchs H, Kieczka H, Moran WC (2011) Caprolactam. In: Ullmann’s encyclopedia of industrial chemistry, pp 2Google Scholar
  18. 18.
    Sekiguchi H (1984) In: Ivin KJ, Saegusa T (eds) Ring-opening polymerization. Elsevier, London, p 809Google Scholar
  19. 19.
    Sebenda J (1972) J Macromol Sci Chem A 6:1145–1199CrossRefGoogle Scholar
  20. 20.
    Puffr R R, Stehlicek J J (1996) In: Salamone JC (ed) Encyclopedia of polymeric materials. CRC Press, Boca RatonGoogle Scholar
  21. 21.
    Thomas JM, Raja R (2005) Proc Natl Acad Sci USA 102:13732–13736CrossRefGoogle Scholar
  22. 22.
    Barton DHR, Boivin J, Gaudin D, Jankowski K (1989) Tetrahedron Lett 30:1381–1382CrossRefGoogle Scholar
  23. 23.
    Murata S, Miura M, Nomura M (1987) J Chem Soc Perkin Trans 1:1259–1262CrossRefGoogle Scholar
  24. 24.
    Legacy CJ, Emmert MH (2016) Synlett 27:A–EGoogle Scholar
  25. 25.
    Khusnutdinova JR, Ben-David Y, Milstein D (2014) J Am Chem Soc 136:2998–3001CrossRefGoogle Scholar
  26. 26.
    So MH, Liu YG, Ho CM, Che CM (2009) Chem Asian J 4:1551–1561CrossRefGoogle Scholar
  27. 27.
    Preedasuriyachai P, Chavasiri W, Sakurai H (2011) Synlett 1121–1124Google Scholar
  28. 28.
    Miyamura H, Morita M, Inasaki T, Kobayashi S (2011) Bull Chem Soc Jpn 84:588–599CrossRefGoogle Scholar
  29. 29.
    Abad A, Concepcion P, Corma A, Garcia H (2005) Angew Chem Int Ed 44:4066–4069CrossRefGoogle Scholar
  30. 30.
    Grirrane A, Corma A, Garcia H (2008) Science 322:1661–1664CrossRefGoogle Scholar
  31. 31.
    Tamura M, Tomishige K (2015) Angew Chem Int Ed 54:864–867CrossRefGoogle Scholar
  32. 32.
    Perez Y, Aprile C, Corma A, Garcia H (2010) Catal Lett 134:204–209CrossRefGoogle Scholar
  33. 33.
    Aschwanden L, Mallat T, Krumeich F, Baiker A (2009) J Mol Catal A Chem 309:57–62CrossRefGoogle Scholar
  34. 34.
    Aschwanden L, Mallat T, Maciejewski M, Krumeich F, Baiker A (2010) ChemCatChem 2:666–673CrossRefGoogle Scholar
  35. 35.
    Grirrane A, Corma A, Garcia H (2009) J Catal 264:138–144CrossRefGoogle Scholar
  36. 36.
    Sudarsanam P, Selvakannan PR, Soni SK, Bhargava SK, Reddy BM (2014) RSC Adv 4:43460–43469CrossRefGoogle Scholar
  37. 37.
    Jin X, Kataoka K, Yatabe T, Yamaguchi K, Mizuno N (2016) Angew Chem Int Ed 55:7212–7217CrossRefGoogle Scholar
  38. 38.
    Zhu B, Angelici RJ (2007) Chem Commun 2157–2159Google Scholar
  39. 39.
    Zhu B, Lazar M, Trewyn BG, Angelici RJ (2008) J Catal 260:1–6CrossRefGoogle Scholar
  40. 40.
    Klobukowski ER, Mueller ML, Angelici RJ, Woo LK (2011) ACS Catal 1:703–708CrossRefGoogle Scholar
  41. 41.
    Romeo M, Bak K, Elfallah J, Lenormand F, Hilaire L (1993) Surf Interface Anal 20:508–512CrossRefGoogle Scholar
  42. 42.
    Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II (2015) ACS Catal 5:2051–2061CrossRefGoogle Scholar
  43. 43.
    Purushothaman RKP, van Haveren J, van Es DS, Melian-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100CrossRefGoogle Scholar
  44. 44.
    Shen YH, Zhang SH, Li HJ, Ren Y, Liu HC (2010) Chem Eur J 16:7368–7371CrossRefGoogle Scholar
  45. 45.
    Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy databaseGoogle Scholar
  46. 46.
    Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) Surf Interface Anal 38:215–218CrossRefGoogle Scholar
  47. 47.
    Lazar M, Zhu B, Angelici RJ (2007) J Phys Chem C 111:4074–4076CrossRefGoogle Scholar
  48. 48.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–78CrossRefGoogle Scholar
  49. 49.
    Biella S, Castiglioni GL, Fumagalli C, Prati L, Rossi M (2002) Catal Today 72:43–49CrossRefGoogle Scholar
  50. 50.
    Murahashi SI, Naota T, Ito K, Maeda Y, Taki H (1987) J Org Chem 52:4319–4327CrossRefGoogle Scholar
  51. 51.
    Endo Y, Backvall JE (2011) Chem Eur J 17:12596–12601CrossRefGoogle Scholar
  52. 52.
    Paunovic V, Ordomsky VV, Sushkevich VL, Schouten JC, Nijhuis TA (2015) ChemCatChem 7:1161–1176CrossRefGoogle Scholar
  53. 53.
    Della Pina C, Falletta E, Rossi M (2007) Top Catal 44:325–329CrossRefGoogle Scholar
  54. 54.
    Klobukowski ER, Angelici RJ, Woo LK (2012) Catal Lett 142:161–167CrossRefGoogle Scholar
  55. 55.
    Rao GA, Periasamy M (2015) Synlett 26:2231–2236CrossRefGoogle Scholar
  56. 56.
    Li ZP, Bohle DS, Li CJ (2006) Proc Natl Acad Sci USA 103:8928–8933CrossRefGoogle Scholar
  57. 57.
    Fuentes L, Osorio U, Quintero L, Hopfl H, Vazquez-Cabrera N, Sartillo-Piscil F (2012) J Org Chem 77:5515–5524CrossRefGoogle Scholar
  58. 58.
    Boess E, Schmitz C, Klussmann M (2012) J Am Chem Soc 134:5317–5325CrossRefGoogle Scholar
  59. 59.
    Basle O, Li CJ (2007) Green Chem 9:1047–1050CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Taiwo O. Dairo
    • 1
  • Nicholas C. Nelson
    • 1
    • 2
  • Igor I. Slowing
    • 1
    • 2
  • Robert J. Angelici
    • 1
  • L. Keith Woo
    • 1
    Email author
  1. 1.Department of ChemistryIowa State UniversityAmesUSA
  2. 2.U.S. D.O.E. Ames LaboratoryAmesUSA

Personalised recommendations