Catalysis Letters

, Volume 146, Issue 10, pp 1903–1909 | Cite as

Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

  • Yang Zhang
  • Michelle Kidder
  • Rose E. Ruther
  • Jagjit Nanda
  • Guo Shiou Foo
  • Zili Wu
  • Chaitanya K. Narula


We present a new class of catalysts, InMo-ZSM-5, which can be prepared by indium impregnation of Mo-ZSM-5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM-5 remains comparable to that of Mo-ZSM-5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM-5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM-5 and mechanical mixture 1In+2Mo-ZSM-5 suggest that In and Mo need to be in close proximity to suppress coke formation. This is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS-5.

Graphical Abstract


Methane to benzene Methane dehydroaromatization Coking suppression Heterobimetallic zeolites InMo-ZSM-5 



This research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. Authors thank Andrew Lepore for critical reading of manuscript. We also thank Shreya Celly, a summer undergraduate intern, for assistance with some of the experiments. Raman microscopy work is supported by Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy. TPR work was supported by US Department of Energy, Office of Science, Basic Energy of Science, Chemical Science, Geoscience and Bioscience Division.


  1. 1.
    BP Statistical Review of World Energy 2013. Document retrieved from: on 16th of October, 2014.
  2. 2.
    Rostrup-Nielsen JR (1993) Catal Today 18:305–324CrossRefGoogle Scholar
  3. 3.
    Spivey J, Hutchings G (2014) Chem Soc Rev 43:792–803 (and references therein)CrossRefGoogle Scholar
  4. 4.
    Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y (1993) Catal Lett 21:35–41CrossRefGoogle Scholar
  5. 5.
    Majhi S, Mohanty P, Wang H, Pant KK (2013) J. Energy Chem 22:543–554 (and references therein)CrossRefGoogle Scholar
  6. 6.
    Ismagilove Z, Matus E, Tsikoza L (2008) Energy Environ Sci 1:526–541 (and references therein)CrossRefGoogle Scholar
  7. 7.
    Zeng J-L, Xiong Z-T, Zhang H-B, Lin G-D, Tsai KR (1998) Catal Lett 53:119–124CrossRefGoogle Scholar
  8. 8.
    Weckhuysen BM, Wang D, Rosynek MP, Lunsford JH (1998) J Catal 175:338–346CrossRefGoogle Scholar
  9. 9.
    Wang H, Liu Z, Shen J, Liu H, Zhangn J (2005) Catal Commmun 6:343–346CrossRefGoogle Scholar
  10. 10.
    Lezcano-Gonzalez I, Oord R, Rovezzi M, Glatzel P, Botchway SW, Weckhuysen BM, Beale, AM (2016) Angew Chem Inter Ed 55:5215–5219CrossRefGoogle Scholar
  11. 11.
    Tempelman CHL, Hensen EJM (2015) App Cata B 176: 731–739CrossRefGoogle Scholar
  12. 12.
    Xu YB, Wang JD, Suzuki Y, Zhang ZG (2012) Catal Today 185:41–46CrossRefGoogle Scholar
  13. 13.
    Liu S, Dong Q, Ohnishi R, Ichikawa M (1997) Chem Commun 1455–1456Google Scholar
  14. 14.
    Chen L, Lin L, Xu Z, Zhang T, Li X (1996) Catal Lett 39:169–172CrossRefGoogle Scholar
  15. 15.
    Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Catal Lett 110:15–21CrossRefGoogle Scholar
  16. 16.
    Shu Y, Xu Y, Wong S-T, Wang L, Guo X (1997) J Catal 170:11–19CrossRefGoogle Scholar
  17. 17.
    Liu B, Yang Y, Sayari A (2001) Appl Catal A 214:95–102CrossRefGoogle Scholar
  18. 18.
    Al-Dughaither AS, de Lasa H (2014) Ind Eng Chem Res 53:15303–15316CrossRefGoogle Scholar
  19. 19.
    Liu Q, Lu W, Tang J, Lin J, Fang JY (2005) J Am Chem Soc 127:5276–5277CrossRefGoogle Scholar
  20. 20.
    O’Brien MG, Beale AM, Jacques SDM, Buslabs T, Honimaki V, Weckhuysen BM (2009) J Phys Chem C 113:4890–4897CrossRefGoogle Scholar
  21. 21.
    Xu Y, Shu Y, Liu S, Huang J, Guo X (1995) Catal Lett 35:233–243CrossRefGoogle Scholar
  22. 22.
    Williams CC, Ekerdt JG, Jehng J-M, Hardcastle FD, Turek AM, Wachs IE (1991) J Phys Chem 95:8781–8791CrossRefGoogle Scholar
  23. 23.
    Berengue OM, Rodrigues AD, Dalmaschio CJ, Lanfredi AJC, Leite ER, Chiquito AJ (2010) J Phys D: Appl Phys 43:040501CrossRefGoogle Scholar
  24. 24.
    Du J, Yang M, Cha SN, Rhen D, Kang M, Kang DJ (2008) Cryst Growth Des 8:2312–2317CrossRefGoogle Scholar
  25. 25.
    Yang X, Wu Z, Moses-Debusk M, Mullins DR, Mahurin SM, Geiger RA, Kidder M, Narula CK (2012) J Phys Chem C 116:23322–23331CrossRefGoogle Scholar
  26. 26.
    Borry III RW, Lu EC, Kim YH, Iglesia E (1997) Non-oxidative conversion of methane with continuous hydrogen removal, US Dept. of Energy/NETL, Morgantown, WV, Contract DE-AC03–76SF00098Google Scholar
  27. 27.
    Jiang H, Wang L, Cui W, Xu Y (1999) Catal Lett 57:95–102CrossRefGoogle Scholar
  28. 28.
    Mihalyi RM, Schay Z, Szegedi A (2009) Catal Today 143:253–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yang Zhang
    • 1
  • Michelle Kidder
    • 2
  • Rose E. Ruther
    • 1
  • Jagjit Nanda
    • 1
  • Guo Shiou Foo
    • 2
  • Zili Wu
    • 2
  • Chaitanya K. Narula
    • 1
  1. 1.Oak Ridge National LaboratoryMaterials Science and Technology DivisionOak RidgeUSA
  2. 2.Oak Ridge National LaboratoryChemical Sciences DivisionOak RidgeUSA

Personalised recommendations