Advertisement

Catalysis Letters

, Volume 146, Issue 4, pp 851–860 | Cite as

Dicyclohexylmethane as a Liquid Organic Hydrogen Carrier: A Model Study on the Dehydrogenation Mechanism over Pd(111)

  • M. Amende
  • C. Gleichweit
  • T. Xu
  • O. Höfert
  • M. Koch
  • P. Wasserscheid
  • H.-P. Steinrück
  • Christian Papp
  • Jörg Libuda
Article

Abstract

We have studied the dehydrogenation of the liquid organic hydrogen carrier (LOHC) dicyclohexylmethane (DCHM) to diphenylmethane (DPM) and its side reactions on a Pd(111) single crystal surface. The adsorption and thermal evolution of both DPM and DCHM was measured in situ in ultrahigh vacuum (UHV) using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (HR-XPS). We found that after deposition at 170 K, the hydrogen-lean DPM undergoes C-H bond scission at the methylene bridge at 200 K and, starting at 360 K, complete dehydrogenation of the phenyl rings occurs. Above 600 K, atomic carbon incorporates into the Pd bulk. For the hydrogen-rich DCHM, the first stable dehydrogenation intermediate, a double π-allylic species, forms already at 190 K. Until 340 K, further dehydrogenation of the phenyl rings and of the methylene bridge occurs, yielding the same intermediate that is formed upon heating of DPM to this temperature, that is, DPM dehydrogenated at the methylene bridge. The onset for the complete dehydrogenation of this intermediate occurs at a much higher temperature than after adsorption of DPM. This behavior is mainly attributed to coadsorbed hydrogen from DCHM dehydrogenation. The results are discussed in comparison to our previous study of DPM and DCHM on Pt(111) revealing strong material dependencies.

Graphical Abstract

Keywords

Liquid organic hydrogen carrier X-ray photoelectron spectroscopy Model catalysis 

Notes

Acknowledgments

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Excellence Cluster “Engineering of Advanced Materials” in the framework of the excellence initiative. The present work was supported by BMW Forschung und Technik GmbH. T. X. is grateful for a PhD scholarship from China Scholarship Council (CSC). P.W. acknowledges support by the ERC through his Advanced Investigator Grant (No. 267376). The European Union (COST Action CM 1104), the DFG and the Fonds der Chemischen Industrie are gratefully acknowledged for further support. The authors thank the BESSY staff for support during the beamtime and the Helmholtz-Zentrum Berlin for travel support and the allocation of synchrotron beamtime.

References

  1. 1.
    Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP (2008) Energy Environ Sci 1:79–85CrossRefGoogle Scholar
  2. 2.
    Teichmann D, Arlt W, Wasserscheid P (2012) Int J Hydrog Energy 37:18118CrossRefGoogle Scholar
  3. 3.
    Eberle U, Felderhoff M, Schüth F (2009) Angew Chem 121:6732CrossRefGoogle Scholar
  4. 4.
    Pez G, Scott A, Cooper A, Cheng H, Bagzis L, Appleby J (2005) WO 2005/000457 A2Google Scholar
  5. 5.
    Crabtree RH (2008) Energy Environ Sci 1:134–138CrossRefGoogle Scholar
  6. 6.
    Eblagon KM, Rentsch D, Friedrichs O, Remhof A, Zuettel A, Ramirez-Cuesta AJ, Tsang SC (2010) Int J Hydrog Energy 35:11609–11621CrossRefGoogle Scholar
  7. 7.
    Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) Energy Environ Sci 4:2767–2773CrossRefGoogle Scholar
  8. 8.
    Teichmann D, Stark K, Müller K, Zöttl G, Wasserscheid P, Arlt W (2012) Energy Environ Sci 5:9044CrossRefGoogle Scholar
  9. 9.
    Brückner N, Obesser K, Bösmann A, Teichmann D, Arlt W, Dungs J, Wasserscheid P (2014) ChemSusChem 7:229–235CrossRefGoogle Scholar
  10. 10.
    Markiewicz M, Zhang YQ, Bösmann A, Brückner N, Thoming J, Wasserscheid P, Stolte S (2015) Energy Environ Sci 8:1035–1045CrossRefGoogle Scholar
  11. 11.
    Wan C, An Y, Xu G, Kong W (2012) Int J Hydrog Energy 37:13092–13096CrossRefGoogle Scholar
  12. 12.
    Sotoodeh F, Smith KJ (2013) Can J Chem Eng 91:1477–1490CrossRefGoogle Scholar
  13. 13.
    Gleichweit C, Amende M, Höfert O, Xu T, Späth F, Brückner N, Wasserscheid P, Libuda J, Steinrück H-P, Papp C (2015) J Phys Chem C 119:20299–20311CrossRefGoogle Scholar
  14. 14.
    Freund HJ, Pacchioni G (2008) Chem Soc Rev 37:2224CrossRefGoogle Scholar
  15. 15.
    Libuda J, Freund HJ (2005) Surf Sci Rep 57:157–298CrossRefGoogle Scholar
  16. 16.
    Papp C, Steinrück H-P (2013) Surf Sci Rep 68:446–487CrossRefGoogle Scholar
  17. 17.
    Papp C, Wasserscheid P, Libuda J, Steinrück H-P (2014) Chem Rec. doi: 10.1002/tcr.201402014 Google Scholar
  18. 18.
    Amende M, Schernich S, Sobota M, Nikiforidis I, Hieringer W, Assenbaum D, Gleichweit C, Drescher HJ, Papp C, Steinrück H-P, Görling A, Wasserscheid P, Laurin M, Libuda J (2013) Chem Eur J 19:10854–10865CrossRefGoogle Scholar
  19. 19.
    Sobota M, Nikiforidis I, Amende M, Zanón BS, Staudt T, Höfert O, Lykhach Y, Hieringer W, Laurin M, Assenbaum D, Wasserscheid P, Steinrück H-P, Görling A, Libuda J (2011) Chem Eur J 17:11542CrossRefGoogle Scholar
  20. 20.
    Sotoodeh F, Smith KJ (2013) J Phys Chem C 117:194–204CrossRefGoogle Scholar
  21. 21.
    Crawford P, Burch R, Hardacre C, Hindle KT, Hu P, Kalirai B, Rooney DW (2007) J Phys Chem C 111:6434–6439CrossRefGoogle Scholar
  22. 22.
    Steinrück H-P, Fuhrmann T, Tränkenschuh B, Denecke R (2006) J Chem Phys 125:204706CrossRefGoogle Scholar
  23. 23.
    Gleichweit C, Amende M, Schernich S, Zhao W, Lorenz MPA, Höfert O, Brückner N, Wasserscheid P, Libuda J, Steinrück H-P, Papp C (2013) ChemSusChem 6:974–977CrossRefGoogle Scholar
  24. 24.
    Amende M, Gleichweit C, Werner K, Schernich S, Zhao W, Lorenz MPA, Höfert O, Papp C, Koch M, Wasserscheid P, Laurin M, Steinrück H-P, Libuda J (2014) ACS Catal 4:657–665CrossRefGoogle Scholar
  25. 25.
    Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R (2006) J Phys Chem B 110:4947–4952CrossRefGoogle Scholar
  26. 26.
    Hunka DE, Picciotto T, Jaramillo DM, Land DP (1999) Surf Sci 421:166–170CrossRefGoogle Scholar
  27. 27.
    Andersen OK (1970) Phys Rev B 2:883–906CrossRefGoogle Scholar
  28. 28.
    Wong Y, Hoffmann R (1990) J Chem Soc. Faraday Trans 86:4083–4094CrossRefGoogle Scholar
  29. 29.
    Gdowski GE, Felter TE, Stulen RH (1987) Surf Sci 181:147–155CrossRefGoogle Scholar
  30. 30.
    Kok GA, Noordermeer A, Nieuwenhuys BE (1983) Surf Sci 135:65–80CrossRefGoogle Scholar
  31. 31.
    Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435–446CrossRefGoogle Scholar
  32. 32.
    Aleksandrov HA, Vines F, Ludwig W, Schauermann S, Neyman KM (2013) Chem Eur J 19:1335CrossRefGoogle Scholar
  33. 33.
    García-Mota M, Bridier B, Pérez-Ramírez J, López N (2010) J Catal 273:92–102CrossRefGoogle Scholar
  34. 34.
    Fuhrmann T, Kinne M, Whelan CM, Zhu JF, Denecke R, Steinrück H-P (2004) Chem Phys Lett 390:208–213CrossRefGoogle Scholar
  35. 35.
    Unterhalt H, Rupprechter G, Freund HJ (2002) J Phys Chem B 106:356CrossRefGoogle Scholar
  36. 36.
    Hess C, Ozensoy E, Goodman DW (2003) J Phys Chem B 107:2759CrossRefGoogle Scholar
  37. 37.
    Bukhtiyarov VI, Kaichev VV, Prosvirin IP (2005) Top Catal 32:3CrossRefGoogle Scholar
  38. 38.
    Doniach S, Sunjic M (1970) J Phys C 3:285CrossRefGoogle Scholar
  39. 39.
    Tränkenschuh B, Fritsche N, Fuhrmann T, Papp C, Zhu JF, Denecke R, Steinrück H-P (2006) J Chem Phys 124:74712CrossRefGoogle Scholar
  40. 40.
    Tränkenschuh B, Papp C, Fuhrmann T, Denecke R, Steinrück H-P (2007) Surf Sci 601:1108–1117CrossRefGoogle Scholar
  41. 41.
    Gabasch H, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Zemlyanov D, Aszalos-Kiss B, Hayek K, Klötzer B (2006) J Catal 242:340–348CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Amende
    • 1
  • C. Gleichweit
    • 1
  • T. Xu
    • 1
  • O. Höfert
    • 1
  • M. Koch
    • 2
  • P. Wasserscheid
    • 2
    • 3
    • 4
  • H.-P. Steinrück
    • 1
    • 3
  • Christian Papp
    • 1
  • Jörg Libuda
    • 1
    • 3
  1. 1.Lehrstuhl für Physikalische Chemie IIFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Lehrstuhl für Chemische ReaktionstechnikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Erlangen Catalysis Resource CenterFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.Forschungszentrum Jülich, Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (IEK 11)ErlangenGermany

Personalised recommendations