Catalysis Letters

, Volume 146, Issue 4, pp 718–724 | Cite as

Direct Water Decomposition on Transition Metal Surfaces: Structural Dependence and Catalytic Screening

  • Charlie Tsai
  • Kyoungjin Lee
  • Jong Suk Yoo
  • Xinyan Liu
  • Hassan Aljama
  • Leanne D. Chen
  • Colin F. Dickens
  • Taylor S. Geisler
  • Chris J. Guido
  • Thomas M. Joseph
  • Charlotte S. Kirk
  • Allegra A. Latimer
  • Brandon Loong
  • Ryan J. McCarty
  • Joseph H. Montoya
  • Lasana Power
  • Aayush R. Singh
  • Joshua J. Willis
  • Martin M. Winterkorn
  • Mengyao Yuan
  • Zhi-Jian Zhao
  • Jennifer Wilcox
  • Jens K. Nørskov
Article

Abstract

Density functional theory calculations are used to investigate thermal water decomposition over the close-packed (111), stepped (211), and open (100) facets of transition metal surfaces. A descriptor-based approach is used to determine that the (211) facet leads to the highest possible rates. A range of 96 binary alloys were screened for their potential activity and a rate control analysis was performed to assess how the overall rate could be improved.

Graphical Abstract

Keywords

Heterogeneous catalysis Kinetic modeling DFT 

Notes

Acknowledgments

The authors thank the US Department of Energy, Office of Basic Energy Sciences.

Author contributions

This Project was carried out as part of the course “Electronic Structure Theory and Applications to Chemical Kinetics” (CHEMENG 444/ENERGY 256) from the Department of Chemical Engineering and the Department of Energy Resources Engineering at Stanford University. CT, KL, JW, and JKN designed the project. CT, KL, JSY, HA, LDC, CD, TG, CG, TJ, CK, AL, XL, BL, RM, JHM, LP, AS, JW, MW, MY, ZJZ carried out the calculations and performed the analysis.

Supplementary material

10562_2016_1708_MOESM1_ESM.pdf (3.2 mb)
Supplementary material 1 (PDF 3311 kb)

References

  1. 1.
    Jellinek H, Kachi H (1984) The catalytic thermal decomposition of water and the production of hydrogen. Int J Hydrogen Energy 9:677–688. doi:10.1016/0360-3199(84)90265-9 CrossRefGoogle Scholar
  2. 2.
    Man IC, Su HY, Calle Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  3. 3.
    Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29:1587–1599. doi:10.1016/j.ijhydene.2004.02.019 CrossRefGoogle Scholar
  4. 4.
    Grabow LC, Studt F, Abild-Pedersen F et al (2011) Descriptor-based analysis applied to HCN synthesis from NH3 and CH4. Angew Chem 123:4697–4701. doi:10.1002/ange.201100353 CrossRefGoogle Scholar
  5. 5.
    Medford AJ, Shi C, Hoffmann MJ et al (2015) CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal Lett. doi:10.1007/s10562-015-1495-6 Google Scholar
  6. 6.
    Nørskov JK, Bligaard T, Logadóttir Á et al (2002) Universality in heterogeneous catalysis. J Catal 209:275–278. doi:10.1006/jcat.2002.3615 CrossRefGoogle Scholar
  7. 7.
    Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913. doi:10.1038/nmat1752 CrossRefGoogle Scholar
  8. 8.
    Xu Y, Lausche AC, Wang S et al (2013) In silico search for novel methane steam reforming catalysts. New J, PhysGoogle Scholar
  9. 9.
    Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F (2014) A theoretical analysis of transition metal catalysts for formic acid decomposition. ACS Catal 4:1226–1233CrossRefGoogle Scholar
  10. 10.
    Studt F, Sharafutdinov I, Abild-Pedersen F et al (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem. doi:10.1038/NCHEM.1873 Google Scholar
  11. 11.
    Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. doi:10.1103/PhysRevLett.99.016105 CrossRefGoogle Scholar
  12. 12.
    Jones G, Studt F, Abild-Pedersen F et al (2011) Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem Eng Sci 66:6318–6323. doi:10.1016/j.ces.2011.02.050 CrossRefGoogle Scholar
  13. 13.
    Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK (2008) Using scaling relations to understand trends in the catalytic activity of transition metals. J Phys 20:064239. doi:10.1088/0953-8984/20/6/064239 Google Scholar
  14. 14.
    Logadóttir Á, Rod TH, Nørskov JK et al (2001) The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229–231CrossRefGoogle Scholar
  15. 15.
    Bligaard T, Nørskov JK, Dahl S et al (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217CrossRefGoogle Scholar
  16. 16.
    Wang S, Petzold V, Tripkovic V et al (2011) Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys 13:20760–20765. doi:10.1039/c1cp20547a CrossRefGoogle Scholar
  17. 17.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi:10.1103/PhysRevB.41.7892 CrossRefGoogle Scholar
  18. 18.
    Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter 21:395502. doi:10.1088/0953-8984/21/39/395502 Google Scholar
  19. 19.
    Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85:235149. doi:10.1103/PhysRevB.85.235149 CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  21. 21.
    Falsig H, Shen J, Khan TS et al (2013) On the structure sensitivity of direct NO decomposition over low-index transition metal facets. Top Catal 57:80–88. doi:10.1007/s11244-013-0164-5 CrossRefGoogle Scholar
  22. 22.
    Medford AJ, Lausche AC, Abild-Pedersen F et al (2013) Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top Catal. doi:10.1007/s11244-013-0169-0 Google Scholar
  23. 23.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904. doi:10.1063/1.1329672 CrossRefGoogle Scholar
  24. 24.
    Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous. Catalysis. doi:10.1002/9781118892114 Google Scholar
  25. 25.
    Yoo JS, Khan TS, Abild-Pedersen F et al (2015) On the role of the surface oxygen species during A-H (A = C, N, O) bond activation: a density functional theory study. Chem Commun 51:2621–2624. doi:10.1039/C4CC08658A CrossRefGoogle Scholar
  26. 26.
    Wang S, Temel B, Shen J et al (2010) Universal Brønsted-Evans-Polanyi relations for C-C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett 141:370–373. doi:10.1007/s10562-010-0477-y CrossRefGoogle Scholar
  27. 27.
    Yoo JS, Zhao Z-J, Nørskov JK, Studt F (2015) Effect of Boron modifications of palladium catalysts for the production of hydrogen from formic acid. ACS Catal. doi:10.1021/acscatal.5b01497 Google Scholar
  28. 28.
    Bligaard T, Nørskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 52:5512–5516. doi:10.1016/j.electacta.2007.02.041 CrossRefGoogle Scholar
  29. 29.
    Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815. doi:10.1038/nmat1223 CrossRefGoogle Scholar
  30. 30.
    Greeley J, Stephens I, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556CrossRefGoogle Scholar
  31. 31.
    Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131:8077–8082. doi:10.1021/ja9000097 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Charlie Tsai
    • 1
    • 2
  • Kyoungjin Lee
    • 3
  • Jong Suk Yoo
    • 1
    • 2
  • Xinyan Liu
    • 1
    • 2
  • Hassan Aljama
    • 1
    • 2
  • Leanne D. Chen
    • 2
    • 4
  • Colin F. Dickens
    • 1
    • 2
  • Taylor S. Geisler
    • 1
  • Chris J. Guido
    • 1
  • Thomas M. Joseph
    • 1
  • Charlotte S. Kirk
    • 1
    • 2
  • Allegra A. Latimer
    • 1
    • 2
  • Brandon Loong
    • 1
  • Ryan J. McCarty
    • 1
    • 5
  • Joseph H. Montoya
    • 1
    • 2
  • Lasana Power
    • 1
    • 6
  • Aayush R. Singh
    • 1
    • 2
  • Joshua J. Willis
    • 1
  • Martin M. Winterkorn
    • 7
  • Mengyao Yuan
    • 3
  • Zhi-Jian Zhao
    • 1
    • 2
    • 8
    • 9
  • Jennifer Wilcox
    • 3
  • Jens K. Nørskov
    • 1
    • 2
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Department of Energy Resources EngineeringStanford UniversityStanfordUSA
  4. 4.Department of ChemistryStanford UniversityStanfordUSA
  5. 5.Department of Geological SciencesStanfordUSA
  6. 6.Department of Civil and Environmental EngineeringStanfordUSA
  7. 7.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  8. 8.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  9. 9.Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations