Catalysis Letters

, Volume 146, Issue 4, pp 744–754 | Cite as

Halogen-Mediated Oxidative Dehydrogenation of Propane Using Iodine or Molten Lithium Iodide

  • D. Chester Upham
  • Michael J. Gordon
  • Horia Metiu
  • Eric W. McFarland
Article

Abstract

We studied propylene production by the reaction of propane with oxygen in the presence of gaseous I2 which works as a gas-phase catalyst. I2 is either introduced as a gas in the mixture of propane and oxygen, or it is produced when propane and oxygen come in contact with molten LiI or a mixture of molten LiI and LiOH. The single-pass propylene yields obtained in both types of experiments are ~64%, at 500 °C and propane partial pressure of 0.1 atm. The main role of I2 is to initiate chain reactions that lead to the formation of a propyl iodide intermediate that decomposes to form propylene. Another important intermediate is HI, which reacts very rapidly with oxygen to regenerate I2 and prevent oxygen from attacking the hydrocarbons.

Graphical Abstract

Keywords

Oxidative dehydrogenation Propane Molten salt Iodine LiI LiOH Halogen 

Notes

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science Basic Energy Sciences Grant number DE-FG03-89ER14048. We are very grateful to Dr. Henrik Kristoffersen for many useful discussions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2016_1701_MOESM1_ESM.docx (650 kb)
Supplementary material 1 (DOCX 649 kb)

References

  1. 1.
    Bartholomew CH, Farrauto RJ (2005) Introduction and fundamentals (Chap. 1). In: Fundamentals of industrial catalytic processes. Wiley OnlineGoogle Scholar
  2. 2.
    Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113CrossRefGoogle Scholar
  3. 3.
    Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613CrossRefGoogle Scholar
  4. 4.
    Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4:3357CrossRefGoogle Scholar
  5. 5.
    Nager M (1963) Dehydrogenation process, US Patent 3,080,435, 1963Google Scholar
  6. 6.
    Nager M (1965) Manufacture of aromatic hydrocarbons, US Patent 3,168,584, 1965Google Scholar
  7. 7.
    Dahl IM, Grande K, Jens K-J, Rytter E, Slagtern Å (1991) Appl Catal 77:163CrossRefGoogle Scholar
  8. 8.
    Chekryshkin YS, Rozdyalovskaya TA, Fedorov AA, Lisichkin GV (2007) Russ Chem Rev 76:153CrossRefGoogle Scholar
  9. 9.
    Kenney CN (1975) Catal Rev 11:197CrossRefGoogle Scholar
  10. 10.
    Villadsen J, Livejerg H (1978) Catal Rev 17:203CrossRefGoogle Scholar
  11. 11.
    Sundermeyer W (1965) Angew Chem Int Ed Engl 4:222CrossRefGoogle Scholar
  12. 12.
    Lovering DG (1982) Molten salt technology. Plenum, New YorkCrossRefGoogle Scholar
  13. 13.
    Ito T, Lunsford JH (1985) Nature 314:721CrossRefGoogle Scholar
  14. 14.
    Morales E, Lunsford JH (1989) J Catal 118:255CrossRefGoogle Scholar
  15. 15.
    Conway SJ, Lunsford JH (1991) J Catal 131:513CrossRefGoogle Scholar
  16. 16.
    Wang DJ, Rosynek MP, Lunsford JH (1995) J Catal 151:155CrossRefGoogle Scholar
  17. 17.
    Gaab S, Machli M, Find J, Grasselli RK, Lercher JA (2003) Top Catal 23:151CrossRefGoogle Scholar
  18. 18.
    Leveles L, Seshan K, Lercher JA, Lefferts L (2003) J Catal 218:307CrossRefGoogle Scholar
  19. 19.
    Leveles L, Seshan K, Lercher JA, Lefferts L (2003) J Catal 218:296CrossRefGoogle Scholar
  20. 20.
    Gaab S, Find J, Müller T, Lercher J (2007) Top Catal 46:101CrossRefGoogle Scholar
  21. 21.
    Tope B, Zhu Y, Lercher JA (2007) Catal Today 123:113CrossRefGoogle Scholar
  22. 22.
    Kumar PK, Gaab S, Muller TE, Lercher JA (2008) Top Catal 50:156CrossRefGoogle Scholar
  23. 23.
    Gärtner CA, van Veen AC, Lercher JA (2014) J Am Chem Soc 136:12691CrossRefGoogle Scholar
  24. 24.
    Gale RJ, Lovering DG (2013) Molten salt techniques, vol 1. Springer, New YorkGoogle Scholar
  25. 25.
    Lantelme F, Groult H (eds) (2013) Molten salts chemistry. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Bloom H (1967) The chemistry of molten salts. W. A. Benjamin, New YorkGoogle Scholar
  27. 27.
    Janz GJ (1967) Molten salt handbook. Academic Press, New YorkGoogle Scholar
  28. 28.
    Ding K, Metiu H, Stucky GD (2013) ChemCatChem 5:1906CrossRefGoogle Scholar
  29. 29.
    Gaspar NJ, Pasternak IS, Vadekar M (1974) Can J Chem Eng 52:793CrossRefGoogle Scholar
  30. 30.
    Golden DM, Benson SW (1969) Chem Rev 69:125CrossRefGoogle Scholar
  31. 31.
    Nangia PS, Benson SW (1964) J Am Chem Soc 86:2770CrossRefGoogle Scholar
  32. 32.
    Nangia PS, Benson SW (1964) J Am Chem Soc 86:2773CrossRefGoogle Scholar
  33. 33.
    Shum LGS, Benson SW (1983) Int J Chem Kinet 15:323CrossRefGoogle Scholar
  34. 34.
    Raley JH, Mullineaux RD, Bittner CW (1963) J Am Chem Soc 85:3174CrossRefGoogle Scholar
  35. 35.
    Shum LGS, Benson SW (1983) Int J Chem Kinet 15:341CrossRefGoogle Scholar
  36. 36.
    Adams CT, Brandenberger SG, DuBois JB, Mill GS, Nager M, Richardson DB (1977) J Org Chem 42:1CrossRefGoogle Scholar
  37. 37.
    Skarchenko VK (1977) Russ Chem Rev 46:731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. Chester Upham
    • 1
  • Michael J. Gordon
    • 2
  • Horia Metiu
    • 1
  • Eric W. McFarland
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations