Catalysis Letters

, Volume 146, Issue 2, pp 509–517 | Cite as

Hydrocarbons via CO2 Hydrogenation Over Iron Catalysts: The Effect of Potassium on Structure and Performance

  • N. Fischer
  • R. Henkel
  • B. Hettel
  • M. Iglesias
  • G. Schaub
  • M. Claeys
Article

Abstract

We present a study in which the suitability of potassium promoted iron-based Fischer–Tropsch (FT) catalysts for the generation of synthetic natural gas additives via the hydrogenation of carbon dioxide through a combined reverse water gas shift (WGS) and FT reaction is studied. Using novel in situ instrumentation based on XRD and magnetometry techniques the reversible conversion of metallic iron to Hägg carbide under reaction conditions and its decomposition in hydrogen could be monitored. The facilitating effect of potassium in the formation of iron carbide could be exposed as function of time on stream. While the FT reaction was reduced in the presence of high potassium loadings the reverse WGS reaction seemed to be unperturbed. A faster activation of an iron phase obtained via the decomposition of iron carbide, compared to the initial activation of a pristine iron phase obtained via the reduction of iron oxide was witnessed.

Graphical Abstract

Keywords

Heterogeneous catalysis XRD Spectroscopy and general characterisation CO2 fixation Hydrogenation 

References

  1. 1.
    Schüth F (2012) Chem Ing Tech 83:1984CrossRefGoogle Scholar
  2. 2.
    Iglesias GM, de Vries C, Claeys M, Schaub G (2015) Catal Today 242:184CrossRefGoogle Scholar
  3. 3.
    Wei W, Jinlong G (2011) Front Chem Sci Eng 5:2CrossRefGoogle Scholar
  4. 4.
    Kopyscinski J, Schildhauer TJ, Biollaz SM (2010) Fuel 89:1763CrossRefGoogle Scholar
  5. 5.
    You Z, Deng W, Zhang Q, Wang Y (2013) Chin J Catal 34:956CrossRefGoogle Scholar
  6. 6.
    Riedel T, Schaub G, Jun KW, Lee KW (2001) Ind Eng Chem Res 40:1355CrossRefGoogle Scholar
  7. 7.
    Jess A, Kaiser P, Kern C, Unde RB, von Olshausen C (2011) Chem Ing Tech 83:1777CrossRefGoogle Scholar
  8. 8.
    Schulz H, Claeys M (1999) Appl Catal A 186:71CrossRefGoogle Scholar
  9. 9.
    Oki S, Mezaki R (1973) J Phys Chem 77:447CrossRefGoogle Scholar
  10. 10.
    Rethwisch DG, Dumesic JA (1986) J Catal 101:35CrossRefGoogle Scholar
  11. 11.
    van Herwijnen T, de Jong WA (1980) J Catal 63:83CrossRefGoogle Scholar
  12. 12.
    Mars P, van Krevelen DW (1954) Chem Eng Sci 1:41CrossRefGoogle Scholar
  13. 13.
    Kubsh JE, Chen Y, Dumesic JAT (1981) J Catal 71:192CrossRefGoogle Scholar
  14. 14.
    Tinkle M, Dumesic JA (1987) J Catal 103:65CrossRefGoogle Scholar
  15. 15.
    Lund CRF, Dumesic JA (1981) J Phys Chem 85:3175CrossRefGoogle Scholar
  16. 16.
    Niemantsverdriet JW, van der Kraan AM (1981) J Catal 72:385CrossRefGoogle Scholar
  17. 17.
    Anderson RB, Hofer LJE, Cohn EM, Seligman B (1951) JACS 73:944CrossRefGoogle Scholar
  18. 18.
    Dry ME (1981) In: Anderson JR (ed) Catalysis: science and technology. Springer, BerlinGoogle Scholar
  19. 19.
    de Smit E, Weckhuysen BM (2008) Chem Soc Rev 37:2758CrossRefGoogle Scholar
  20. 20.
    Niemantsverdriet JW, Van der Kraan AM, Van Dijk WL, Van der Baan HS (1980) J Phys Chem 84:3363CrossRefGoogle Scholar
  21. 21.
    Raupp GB, Delgass WN (1979) J Catal 58:348CrossRefGoogle Scholar
  22. 22.
    Raupp GB, Delgass WN (1979) J Catal 58:337CrossRefGoogle Scholar
  23. 23.
    Amelse JA, Butt JB, Schwartz LH (1978) J Phys Chem 82:558CrossRefGoogle Scholar
  24. 24.
    Reymond JP, Mériaudeau P, Teichner SJ (1982) J Catal 75:39CrossRefGoogle Scholar
  25. 25.
    Kuivila CS, Stair PC, Butt JB (1989) J Catal 118:299CrossRefGoogle Scholar
  26. 26.
    Butt J (1990) Catal Lett 1990(7):61–81Google Scholar
  27. 27.
    Blanchard F, Reymond JP, Pommier B, Teichner SJ (1982) J Mol Catal 17:171CrossRefGoogle Scholar
  28. 28.
    Dry ME (1990) Catal Lett 7:241CrossRefGoogle Scholar
  29. 29.
    Brodén G, Gafner G, Bonzel HP (1979) Surf Sci 84:295CrossRefGoogle Scholar
  30. 30.
    Anderson RB, Seligman B, Shultz JF, Kelly R, Elliott MA (1952) Ind Eng Chem 44:391CrossRefGoogle Scholar
  31. 31.
    Connell G, Dumesic JA (1985) J Catal 92:17CrossRefGoogle Scholar
  32. 32.
    Claeys M, Fischer N (2013) US 8,597,598Google Scholar
  33. 33.
    Claeys M, van Steen E, Visage J, van de Loosdrecht J (2010) WO 2010/004419 A2Google Scholar
  34. 34.
    Claeys M, Dry ME, van Steen E, du Plessis E, van Berge PJ, Saib AM, Moodley DJ (2014) J Catal 318:193CrossRefGoogle Scholar
  35. 35.
    Fischer N, Clapham B, Feltes T, van Steen E, Claeys M (2014) Angew Chem Int Ed 53:1342CrossRefGoogle Scholar
  36. 36.
    Fischer N, Clapham B, Feltes T, Claeys M (2015) ACS Catal 5:113CrossRefGoogle Scholar
  37. 37.
    Chernavskii PA, Dalmon J-A, Perov NS, Khodakov AY (2009) Oil Gas Sci Technol Revue IFP 64:25CrossRefGoogle Scholar
  38. 38.
    Llorca J, Dalmon JA, Ramírez de la Piscina P, Homs N (2003) Appl Catal A 243:261CrossRefGoogle Scholar
  39. 39.
    Barbier A, Hanif A, Dalmon JA, Martin GA (1998) Appl Catal A 168:333CrossRefGoogle Scholar
  40. 40.
    Dalmon JA (1994) In: Imelick B, Verdrine J (eds) Catalyst characterisation: physical techniques for solid materials. Plenum Press, New YorkGoogle Scholar
  41. 41.
    Schulz H, Boehringer W, Kohl C, Rahman N, Will A (1984) DGMK Forsch 3:320Google Scholar
  42. 42.
    Kogler M, Köck EM, Bielz T, Pfaller K, Klötzer B, Schmidmair D, Perfler L (2014) J Phys Chem C 118:8435CrossRefGoogle Scholar
  43. 43.
    Steynberg AP, Espinoza RL, Jager B, Vosloo AC (1999) Appl Catal A 186:41CrossRefGoogle Scholar
  44. 44.
    Ding M, Yang Y, Wu B, Li Y, Wang T, Ma L (2015) Appl. Energy. doi:10.1016/j.apenergy.2014.12.042 Google Scholar
  45. 45.
    Hammond CR (1993) The elements. In: Linde DR (ed) Handbook of chemistry and physics. CRC Press, Inc, Boca RantonGoogle Scholar
  46. 46.
    van Santen RA, Markvoort AJ, Ghouri MM, Hilbers PAJ, Hensen EJM (2013) J Phys Chem C 17:4488CrossRefGoogle Scholar
  47. 47.
    van Santen RA, Markvoort AJ, Filot IAW, Ghouri MM, Hensen EJM (2013) Phys Chem Chem Phys 15:17038CrossRefGoogle Scholar
  48. 48.
    van Santen RA, Ghouri M, Hensen EMJ (2014) Phys Chem Chem Phys 16:10041CrossRefGoogle Scholar
  49. 49.
    Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36CrossRefGoogle Scholar
  50. 50.
    Lee SB, Weiss M, Ertl G (1981) Surf Sci 108:357CrossRefGoogle Scholar
  51. 51.
    Riedel T, Claeys M, Schulz H, Schaub G, Nam S-S, Jun K-W, Choi M-J, Kishan G, Lee K-W (1999) Appl Catal A 186:201CrossRefGoogle Scholar
  52. 52.
    Petersen MA, Cariem MJ, Claeys M, van Steen E (2015) Appl Catal A 496:64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Fischer
    • 1
  • R. Henkel
    • 1
  • B. Hettel
    • 2
  • M. Iglesias
    • 2
  • G. Schaub
    • 2
  • M. Claeys
    • 1
  1. 1.Centre for Catalysis Research and c*change (DST-NRF Centre of Excellence in Catalysis), Department of Chemical EngineeringUniversity of Cape TownCape TownSouth Africa
  2. 2.Engler-Bunte-InstitutKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations