Catalysis Letters

, Volume 146, Issue 2, pp 452–463

Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts

  • Dmitry E. Doronkin
  • Aleksandra B. Kuriganova
  • Igor N. Leontyev
  • Sina Baier
  • Henning Lichtenberg
  • Nina V. Smirnova
  • Jan-Dierk Grunwaldt
Article

Abstract

Pt/γ–Al2O3 catalysts made by fast and simple electrochemical dispersion method were characterized using X-ray absorption spectroscopy, CO chemisorption, transmission electron microscopy and X-ray diffraction, and compared with an impregnated catalyst with respect to oxidation of CO and NO. A combination of techniques revealed average particle sizes of 3–4 nm for 0.81–3.8 wt% Pt/γ–Al2O3 catalysts. Electrochemically prepared materials demonstrated catalytic activity comparable to that of conventional impregnated catalyst and reasonable stability.

Graphical Abstract

Keywords

Platinum DOC Electrochemical dispersion Oxidation 

Supplementary material

10562_2015_1651_MOESM1_ESM.doc (614 kb)
Supplementary material 1 (DOC 614 kb)

References

  1. 1.
    Acres GJK (1970) Platinum catalysts for diesel engine exhaust purification. Platin Met Rev 14:78–85Google Scholar
  2. 2.
    Johnson TV (2009) Review of diesel emissions and control. Int J Engine Res 10:275–285. doi:10.1243/14680874jer04009 CrossRefGoogle Scholar
  3. 3.
    Bueno-López A (2014) Diesel soot combustion ceria catalysts. Appl Catal B Environ 146:1–11. doi:10.1016/j.apcatb.2013.02.033 CrossRefGoogle Scholar
  4. 4.
    Nova I, Ciardelli C, Tronconi E et al (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction. Catal Today 114:3–12. doi:10.1016/j.cattod.2006.02.012 CrossRefGoogle Scholar
  5. 5.
    Boubnov A, Dahl S, Johnson E et al (2012) Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions. Appl Catal B Environ 126:315–325. doi:10.1016/j.apcatb.2012.07.029 CrossRefGoogle Scholar
  6. 6.
    Gracia FJ, Bollmann L, Wolf EE et al (2003) In situ FTIR, EXAFS, and activity studies of the effect of crystallite size on silica-supported Pt oxidation catalysts. J Catal 220:382–391. doi:10.1016/S0021-9517(03)00296-3 CrossRefGoogle Scholar
  7. 7.
    Szabó A, Henderson MA, Yates JT (1992) Oxidation of CO by oxygen on a stepped platinum surface: identification of the reaction site. J Chem Phys 96:6191–6202. doi:10.1063/1.462636 CrossRefGoogle Scholar
  8. 8.
    Yang J, Tschamber V, Habermacher D et al (2008) Effect of sintering on the catalytic activity of a Pt based catalyst for CO oxidation: experiments and modeling. Appl Catal B Environ 83:229–239. doi:10.1016/j.apcatb.2008.02.018 CrossRefGoogle Scholar
  9. 9.
    Auvray X, Pingel T, Olsson E, Olsson L (2013) The effect gas composition during thermal aging on the dispersion and NO oxidation activity over Pt/Al2O3 catalysts. Appl Catal B Environ 129:517–527. doi:10.1016/j.apcatb.2012.10.002 CrossRefGoogle Scholar
  10. 10.
    Irfan MF, Goo JH, Kim SD, Hong SC (2007) Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process. Chemosphere 66:54–59. doi:10.1016/j.chemosphere.2006.05.044 CrossRefGoogle Scholar
  11. 11.
    Hu L, Boateng KA, Hill JM (2006) Sol–gel synthesis of Pt/Al2O3 catalysts: effect of Pt precursor and calcination procedure on Pt dispersion. J Mol Catal Chem 259:51–60. doi:10.1016/j.molcata.2006.06.018 CrossRefGoogle Scholar
  12. 12.
    Reyes P, Oportus M, Pecchi G et al (1996) Influence of the nature of the platinum precursor on the surface properties and catalytic activity of alumina-supported catalysts. Catal Lett 37:193–197. doi:10.1007/BF00807753 CrossRefGoogle Scholar
  13. 13.
    Schmitz PJ, Kudla RJ, Drews AR et al (2006) NO oxidation over supported Pt: impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. Appl Catal B Environ 67:246–256. doi:10.1016/j.apcatb.2006.05.012 CrossRefGoogle Scholar
  14. 14.
    McLean M, Mykura H (1966) The temperature dependence of the surface energy anisotropy of platinum. Surf Sci 5:466–481. doi:10.1016/0039-6028(66)90042-2 CrossRefGoogle Scholar
  15. 15.
    Cabié M, Giorgio S, Henry CR et al (2010) Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment. J Phys Chem C 114:2160–2163. doi:10.1021/jp906721g CrossRefGoogle Scholar
  16. 16.
    Yoshida H, Matsuura K, Kuwauchi Y et al (2011) Temperature-dependent change in shape of platinum nanoparticles supported on CeO 2 during catalytic reactions. Appl Phys Express 4:065001. doi:10.1143/APEX.4.065001 CrossRefGoogle Scholar
  17. 17.
    Hofmann G, Rochet A, Ogel E et al (2015) Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv 5:6893–6905. doi:10.1039/C4RA14007A CrossRefGoogle Scholar
  18. 18.
    Simonsen SB, Chorkendorff I, Dahl S et al (2012) Effect of particle morphology on the ripening of supported Pt nanoparticles. J Phys Chem C 116:5646–5653. doi:10.1021/jp2098262 CrossRefGoogle Scholar
  19. 19.
    Aramendía MA, Benítez JA, Borau V et al (1999) Study of MgO and Pt/MgO systems by XRD, TPR, and 1 H MAS NMR. Langmuir 15:1192–1197. doi:10.1021/la9808972 CrossRefGoogle Scholar
  20. 20.
    Regalbuto JR, Navada A, Shadid S et al (1999) An experimental verification of the physical nature of Pt adsorption onto alumina. J Catal 184:335–348. doi:10.1006/jcat.1999.2471 CrossRefGoogle Scholar
  21. 21.
    Shelimov B, Lambert J-F, Che M, Didillon B (1999) Initial steps of the alumina-supported platinum catalyst preparation: a molecular study by 195Pt NMR, UV–visible, EXAFS, and raman spectroscopy. J Catal 185:462–478. doi:10.1006/jcat.1999.2527 CrossRefGoogle Scholar
  22. 22.
    Oudenhuijzen MK, Kooyman PJ, Tappel B et al (2002) Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3 )2: a combination of HRTEM, mass spectrometry, and quick EXAFS. J Catal 205:135–146. doi:10.1006/jcat.2001.3433 CrossRefGoogle Scholar
  23. 23.
    Mojet BL, Ramaker DE, Miller JT, Koningsberger DC (1999) Observation of a hydrogen-induced shape resonance on Pt/LTL catalysts and its relation with support acidity/alkalinity. Catal Lett 62:15–20. doi:10.1023/A:1019018215806 CrossRefGoogle Scholar
  24. 24.
    Gracia FJ, Miller JT, Kropf AJ, Wolf EE (2002) Kinetics, FTIR, and controlled atmosphere EXAFS study of the effect of chlorine on Pt-supported catalysts during oxidation reactions. J Catal 209:341–354. doi:10.1006/jcat.2002.3601 CrossRefGoogle Scholar
  25. 25.
    Gololobov AM, Bekk IE, Bragina GO et al (2009) Platinum nanoparticle size effect on specific catalytic activity in n-alkane deep oxidation: dependence on the chain length of the paraffin. Kinet Catal 50:830–836. doi:10.1134/S0023158409060068 CrossRefGoogle Scholar
  26. 26.
    Boorse R, Stark WJ, Mädler L et al (2003) Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J Catal 213:296–304. doi:10.1016/S0021-9517(02)00082-9 CrossRefGoogle Scholar
  27. 27.
    Hannemann S, Grunwaldt J-D, Lienemann P et al (2007) Combination of flame synthesis and high-throughput experimentation: the preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane. Appl Catal Gen 316:226–239. doi:10.1016/j.apcata.2006.09.034 CrossRefGoogle Scholar
  28. 28.
    Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B Environ 37:17–25. doi:10.1016/S0926-3373(01)00319-8 CrossRefGoogle Scholar
  29. 29.
    Li J, Hao J, Fu L et al (2004) Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition. Appl Catal Gen 265:43–52. doi:10.1016/j.apcata.2004.01.001 CrossRefGoogle Scholar
  30. 30.
    Djokić SS, Cavallotti PL (2010) Electroless deposition: theory and applications. In: Djokić SS (ed) Electrodeposition. Springer, New York, pp 251–289CrossRefGoogle Scholar
  31. 31.
    Rao C, Trivedi D (2005) Chemical and electrochemical depositions of platinum group metals and their applications. Coord Chem Rev 249:613–631. doi:10.1016/j.ccr.2004.08.015 CrossRefGoogle Scholar
  32. 32.
    Leontyev I, Kuriganova A, Kudryavtsev Y et al (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal Gen 431–432:120–125. doi:10.1016/j.apcata.2012.04.025 CrossRefGoogle Scholar
  33. 33.
    Smirnova NV, Kuriganova AB, Leont’eva DV et al (2013) Structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262. doi:10.1134/S0023158413020146 CrossRefGoogle Scholar
  34. 34.
    Boubnov A, Gänzler A, Conrad S et al (2013) Oscillatory CO oxidation over Pt/Al2O3 catalysts studied by in situ XAS and DRIFTS. Top Catal 56:333–338. doi:10.1007/s11244-013-9976-6 CrossRefGoogle Scholar
  35. 35.
    Karakaya C, Deutschmann O (2012) A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/Al2O3 catalysts. Appl Catal Gen 445–446:221–230. doi:10.1016/j.apcata.2012.08.022 CrossRefGoogle Scholar
  36. 36.
    Spenadel L, Boudart M (1960) Dispersion of platinum on supported catalysts. J Phys Chem 64:204–207. doi:10.1021/j100831a004 CrossRefGoogle Scholar
  37. 37.
    Grunwaldt J-D, van Vegten N, Baiker A (2007) Insight into the structure of supported palladium catalysts during the total oxidation of methane. Chem Commun 44:4635–4637. doi:10.1039/b710222d CrossRefGoogle Scholar
  38. 38.
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.1107/S0909049505012719 CrossRefGoogle Scholar
  39. 39.
    Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72:621–654. doi:10.1103/RevModPhys.72.621 CrossRefGoogle Scholar
  40. 40.
    Haneda M, Watanabe T, Kamiuchi N, Ozawa M (2013) Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl Catal B Environ 142–143:8–14. doi:10.1016/j.apcatb.2013.04.055 CrossRefGoogle Scholar
  41. 41.
    Siegel S, Hoekstra HR, Tani BS (1969) The crystal structure of beta-platinum dioxide. J Inorg Nucl Chem 31:3803–3807. doi:10.1016/0022-1902(69)80300-3 CrossRefGoogle Scholar
  42. 42.
    Zhou RS, Snyder RL (1991) Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr Sect B 47:617–630. doi:10.1107/S0108768191002719 CrossRefGoogle Scholar
  43. 43.
    Owen EA, Yates EL (1933) XLI. Precision measurements of crystal parameters. Lond Edinb Dublin Philos Mag J Sci 15:472–488. doi:10.1080/14786443309462199 CrossRefGoogle Scholar
  44. 44.
    Abid M, Paul-Boncour V, Touroude R (2006) Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states. Appl Catal Gen 297:48–59. doi:10.1016/j.apcata.2005.08.048 CrossRefGoogle Scholar
  45. 45.
    Naresh D, Kumar VP, Harisekhar M et al (2014) Characterization and functionalities of Pd/hydrotalcite catalysts. Appl Surf Sci 314:199–207. doi:10.1016/j.apsusc.2014.06.156 CrossRefGoogle Scholar
  46. 46.
    Venderbosch RH, Prins W, van Swaaij WPM (1998) Platinum catalyzed oxidation of carbon monoxide as a model reaction in mass transfer measurements. Chem Eng Sci 53:3355–3366. doi:10.1016/S0009-2509(98)00151-1 CrossRefGoogle Scholar
  47. 47.
    Hauptmann W, Drochner A, Vogel H et al (2007) Global kinetic models for the oxidation of NO on platinum under lean conditions. Top Catal 42–43:157–160. doi:10.1007/s11244-007-0170-6 CrossRefGoogle Scholar
  48. 48.
    Matam SK, Kondratenko EV, Aguirre MH et al (2013) The impact of aging environment on the evolution of Al2O3 supported Pt nanoparticles and their NO oxidation activity. Appl Catal B Environ 129:214–224. doi:10.1016/j.apcatb.2012.09.018 CrossRefGoogle Scholar
  49. 49.
    Putna ES, Vohs JM, Gorte RJ (1997) Oxygen desorption from α-Al2O3 (0001) supported Rh, Pt and Pd particles. Surf Sci 391:L1178–L1182. doi:10.1016/S0039-6028(97)00611-0 CrossRefGoogle Scholar
  50. 50.
    Oran U, Uner D (2004) Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl Catal B Environ 54:183–191. doi:10.1016/j.apcatb.2004.06.011 CrossRefGoogle Scholar
  51. 51.
    Job N, Chatenet M, Berthon-Fabry S et al (2013) Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: avoid chloride-based Pt salts! J Power Sour 240:294–305. doi:10.1016/j.jpowsour.2013.03.188 CrossRefGoogle Scholar
  52. 52.
    Fogel S, Doronkin DE, Gabrielsson P, Dahl S (2012) Optimisation of Ag loading and alumina characteristics to give sulphur-tolerant Ag/Al2O3 catalyst for H2-assisted NH3-SCR of NOx. Appl Catal B Environ 125:457–464. doi:10.1016/j.apcatb.2012.06.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dmitry E. Doronkin
    • 1
    • 2
  • Aleksandra B. Kuriganova
    • 3
  • Igor N. Leontyev
    • 4
  • Sina Baier
    • 2
  • Henning Lichtenberg
    • 1
    • 2
  • Nina V. Smirnova
    • 3
    • 5
  • Jan-Dierk Grunwaldt
    • 1
    • 2
  1. 1.Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Platov South-Russian State Polytechnical UniversityNovocherkasskRussia
  4. 4.Physics DepartmentSouthern Federal UniversityRostov-on-DonRussia
  5. 5.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations