Catalysis Letters

, Volume 145, Issue 12, pp 2066–2076 | Cite as

Solvent-Free Microwave-Assisted Peroxidative Oxidation of Alcohols Catalyzed by Iron(III)-TEMPO Catalytic Systems

Article

Abstract

The iron(III) complexes [H(EtOH)][FeCl2(L)2] (1), [H2bipy]1/2[FeCl2(L)2].DMF (2) and [FeCl2(L)(2,2′-bipy)] (3) (L = 3-amino-2-pyrazinecarboxylate; H2bipy = doubly protonated 4,4′-bipyridine; 2,2′-bipy = 2,2′-bipyridine, DMF = dimethylformamide) have been synthesized and fully characterized by IR, elemental and single-crystal X-ray diffraction analyses, as well as by electrochemical methods. Complexes 1 and 2 have similar mononuclear structures containing different guest molecules (protonated ethanol for 1 and doubly protonated 4,4′-bipyridine for 2) in their lattices, whereas the complex 3 has one 3-amino-2-pyrazinecarboxylate and a 2,2′-bipyridine ligand. They show a high catalytic activity for the low power (10 W) solvent-free microwave assisted peroxidative oxidation of 1-phenylethanol, leading, in the presence of TEMPO, to quantitative yields of acetophenone [TOFs up to 8.1 × 103 h−1, (3)] after 1 h. Moreover, the catalysts are of easy recovery and reused, at least for four consecutive cycles, maintaining 83 % of the initial activity and concomitant rather high selectivity.

Graphical Abstract

3-Amino-2-pyrazinecarboxylic acid is used to synthesize three new iron(III) complexes which act as heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation of 1-phenylethanol. Open image in new window

Keywords

Alcohol oxidation Mononuclear iron(III) complexes TEMPO Microwave-assisted catalysis 

Supplementary material

10562_2015_1616_MOESM1_ESM.docx (111 kb)
Supplementary material 1 (DOCX 110 kb)

References

  1. 1.
    Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Chem Rev 113:6234CrossRefGoogle Scholar
  2. 2.
    Karabach YY, Kopylovich MN, Mahmudov KT (2014) Microwave-assisted catalytic oxidation of alcohols to carbonyl compounds. In: Pombeiro AJL (ed) Advances in organometallic chemistry and catalysis: the silver/gold jubilee international conference on organometallic chemistry celebratory book, vol 18, 233rd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Kopylovich MN, Ribeiro APC, Alegria ECBA, Martins NMR, Martins LMDRS, Pombeiro AJL (2015) Adv Organomet Chem. doi:10.1016/bs.adomc.2015.02.004 Google Scholar
  4. 4.
    Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Alegria ECBA, Liuc C–M, Pombeiro AJL (2014) Dalton Trans 43:3966CrossRefGoogle Scholar
  5. 5.
    Alexandru M, Cazacu M, Arvinte A, Shova S, Turta C, Simionescu BC, Dobrov A, Alegria ECBA, Martins LMDRS, Pombeiro AJL, Arion VB (2014) Eur J Inorg Chem 2014:120CrossRefGoogle Scholar
  6. 6.
    Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2015) Coord Chem Rev. doi:10.1016/j.ccr.2015.01.020 Google Scholar
  7. 7.
    Sabbatini A, Martins LMDRS, Mahmudov KT, Kopylovich MN, Drew MGB, Pettinari C, Pombeiro AJL (2014) Catal Commun 48:69CrossRefGoogle Scholar
  8. 8.
    Jlassi R, Ribeiro APC, Guedes da Silva MFC, Mahmudov KT, Kopylovich MN, Anisimova TB, Naïli H, Tiago GAO, Pombeiro AJL (2014) Eur J Inorg Chem 2014:4541CrossRefGoogle Scholar
  9. 9.
    Nasani R, Saha M, Mobin SM, Martins LMDRS, Pombeiro AJL, Kirillov AM, Mukhopadhyay S (2014) Dalton Trans 43:9944CrossRefGoogle Scholar
  10. 10.
    Mahmudov KT, Kopylovich MN, Sabbatini A, Drew MGB, Martins LMDRS, Pettinari C, Pombeiro AJL (2014) Inorg Chem 53:9946CrossRefGoogle Scholar
  11. 11.
    Shixaliyev NQ, Gurbanov AV, Maharramov AM, Mahmudov KT, Kopylovich MN, Martins LMDRS, Nenajdenko VG, Pombeiro AJL (2014) New J Chem 38:4807CrossRefGoogle Scholar
  12. 12.
    Martín SE, Garrone A (2003) Tetrahedron Lett 44:549CrossRefGoogle Scholar
  13. 13.
    Al-Hunaiti A, Niemi T, Sibaouih A, Pihko P, Leskelä M, Repo T (2010) Chem Commun 46:9250CrossRefGoogle Scholar
  14. 14.
    Lenze M, Bauer EB (2013) Chem Commun 49:5889CrossRefGoogle Scholar
  15. 15.
    Bhaumik C, Manoury E, Daran J-C, Sözen-Aktaş P, Demirhan F, Poli R (2014) J Organomet Chem 760:115CrossRefGoogle Scholar
  16. 16.
    Naziruddin AR, Zhuang C-S, Lin W-J, Hwang W-S (2014) Dalton Trans 43:5335CrossRefGoogle Scholar
  17. 17.
    Zhou X-T, Ji H-B, Liu S-G (2013) Tetrahedron Lett 54:3882CrossRefGoogle Scholar
  18. 18.
    Mueller JA, Cowell A, Chandler BD, Sigman MS (2005) J Am Chem Soc 127:14817CrossRefGoogle Scholar
  19. 19.
    Gryca I, Machura B, Małecki JG, Shul’pina LS, Pombeiro AJL, Shul’pin GB (2014) Dalton Trans 43:5759CrossRefGoogle Scholar
  20. 20.
    Morad M, Sankar M, Cao E, Nowicka E, Davies TE, Miedziak PJ, Morgan DJ, Knight DW, Bethell D, Gavriilidis A, Hutchings GJ (2014) Catal Sci Technol 4:3120CrossRefGoogle Scholar
  21. 21.
    Polshettiwar V, Varma RS (2008) Acc Chem Res 41:629CrossRefGoogle Scholar
  22. 22.
    Correa A, Mancheno OG, Bolm C (2008) Chem Soc Rev 37:1108CrossRefGoogle Scholar
  23. 23.
    Schröder K, Join B, Amali AJ, Junge K, Ribas X, Costas M, Beller M (2011) Angew Chem Int Ed 6:1425CrossRefGoogle Scholar
  24. 24.
    Kinen CO, Rossi LI, de Rossi RH (2009) J Org Chem 74:7132CrossRefGoogle Scholar
  25. 25.
    Bigi MA, Reed SA, White MC (2011) Nat Chem 3:216CrossRefGoogle Scholar
  26. 26.
    Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R (2010) Adv Synth Catal 352:113CrossRefGoogle Scholar
  27. 27.
    Fernandes RR, Lasri J, Guedes da Silva MFC, da Silva JAL, Fraústo da Silva JJR, Pombeiro AJL (2011) Appl Catal A Gen 402:110CrossRefGoogle Scholar
  28. 28.
    Martins LMDRS, de Peixoto Almeida M, Carabineiro SAC, Figueiredo JL, Pombeiro AJL (2013) Chem Catal Chem 5:3847Google Scholar
  29. 29.
    Sheldon RA (2008) Chem Commun 29:3352CrossRefGoogle Scholar
  30. 30.
    Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Figiel PJ, Karabach YY, Pombeiro AJL (2010) J Mol Catal A Chem 318:44CrossRefGoogle Scholar
  31. 31.
    Tayebee R, Amani V, Khavasi HR (2008) Chin J Chem 26:500CrossRefGoogle Scholar
  32. 32.
    Cheng X-L, Gao S, Ng SW (2009) Acta Cryst E65:m1631Google Scholar
  33. 33.
    Deng Z-P, Kang W, Huo L-H, Zhao H, Gao S (2010) Dalton Trans 39:6276CrossRefGoogle Scholar
  34. 34.
    Lemos MANDA, Pombeiro AJL (1992) J Organomet Chem 438:159CrossRefGoogle Scholar
  35. 35.
    Martins LMDRS, Fraústo da Silva JJR, Pombeiro AJL, Henderson RA, Evans DJ, Benetollo F, Bombieri G, Michelin RA (1999) Inorg Chim Acta 291:39CrossRefGoogle Scholar
  36. 36.
    Venâncio AIF, Kuznetsov ML, Guedes da Silva MFC, Martins LMDRS, Fraústo da Silva JJR, Pombeiro AJL (2002) Inorg Chem 41:6456CrossRefGoogle Scholar
  37. 37.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New YorkGoogle Scholar
  38. 38.
    Sheldrick WS, Exner R (1990) J Organomet Chem 386:375CrossRefGoogle Scholar
  39. 39.
    Figiel PJ, Leskelä M, Repo T (2007) Adv Synth Catal 349:1173CrossRefGoogle Scholar
  40. 40.
    Gamez P, Arends IWCE, Sheldon RA, Reedijk J (2004) Adv Synth Catal 346:805CrossRefGoogle Scholar
  41. 41.
    Ma Z, Wei L, Alegria ECBA, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2014) Dalton Trans 43:4048CrossRefGoogle Scholar
  42. 42.
    Uber JS, Vogels Y, van den Helder D, Mutikainen I, Turpeinen U, Fu WT, Roubeau O, Gamez P, Reedijk J (2007) Eur J Inorg Chem 26:4197CrossRefGoogle Scholar
  43. 43.
    Dronova MS, Bilyachenko AN, Yalymov AI, Kozlov YN, Shul’pina LS, Korlyukov AA, Arkhipov DE, Levitsky MM, Shubina ES, Shul’pin GB (2014) Dalton Trans 43:872CrossRefGoogle Scholar
  44. 44.
    Slaughter LM, Collman JP, Eberspacher TA, Brauman JI (2004) Inorg Chem 43:5198CrossRefGoogle Scholar
  45. 45.
    Howard JA (1973) In: Kochi JK (ed) Free radicals, vol 3. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Chemical Engineering DepartmentISELLisbonPortugal

Personalised recommendations