Catalysis Letters

, Volume 145, Issue 8, pp 1571–1580 | Cite as

Water–Gas Shift on Pd/α-MnO2 and Pt/α-MnO2

  • Jun-jun Shan
  • Luan Nguyen
  • Shiran Zhang
  • Franklin-Feng Tao
Article

Abstract

Low temperature water–gas shift (WGS) catalysts, Pd nanoparticles supported on α-MnO2 nanorods termed Pd/α-MnO2 and Pt nanoparticles supported on α-MnO2 nanorods termed Pt/α-MnO2 were synthesized by introducing Pd or Pt precursor to well-prepared α-MnO2 nanorods through precipitation deposition with a following annealing at 300 °C. They are quite active for WGS in the temperature range of 140–350 °C. Activation energies for WGS on Pd/α-MnO2 and Pt/α-MnO2 are 45.3 and 56.4 kJ/mol respectively, comparable to precious metal supported on CeO2 and TiO2 for WGS. Surface chemistries of the two catalysts during WGS were tracked with ambient pressure X-ray photoelectron spectroscopy. Different from the preservation of the surface and bulk phase of other oxide support such as CeO2, TiO2 in CeO2- or TiO2-based WGS catalysts, both surface and bulk of α-MnO2 nanorods of Pd/α-MnO2 and Pt/α-MnO2 are transited to MnO during WGS. In-situ studies identified oxygen vacancies of the formed MnO support during WGS and the metallic state of Pd and Pt nanoparticles supported on the nonstoichiometric MnO.

Graphical Abstract

Keywords

Heterogeneous catalysis Nanoparticles TEM Spectroscopy and General Characterisation 

Notes

Acknowledgments

This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-12ER16353. We appreciate Z. Tong for help when we collected a part of the data.

References

  1. 1.
    Fraccari EP, D’Alessandro O, Sambeth J, Baronetti G, Marino F (2014) Fuel Process Technol 119:67CrossRefGoogle Scholar
  2. 2.
    Karakaya C, Otterstatter R, Maier L, Deutschmann O (2014) Appl Catal A 470:31CrossRefGoogle Scholar
  3. 3.
    Bruix A, Rodriguez JA, Ramirez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) J Am Chem Soc 134:8968CrossRefGoogle Scholar
  4. 4.
    Senanayake SD, Stacchiola D, Rodriguez JA (2013) Acc Chem Res 46:1702CrossRefGoogle Scholar
  5. 5.
    Yang M, Allard LF, Flytzani-Stephanopoulos M (2013) J Am Chem Soc 135:3768CrossRefGoogle Scholar
  6. 6.
    Lin J, Wang AQ, Qiao BT, Liu XY, Yang XF, Wang XD, Liang JX, Li JX, Liu JY, Zhang T (2013) J Am Chem Soc 135:15314CrossRefGoogle Scholar
  7. 7.
    Zhang SR, Shan JJ, Zhu Y, Frenkel AI, Patlolla A, Huang WX, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao F (2013) J Am Chem Soc 135:8283CrossRefGoogle Scholar
  8. 8.
    Zhai YP, Pierre D, Si R, Deng WL, Ferrin P, Nilekar AU, Peng GW, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M (2010) Science 329:1633CrossRefGoogle Scholar
  9. 9.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935CrossRefGoogle Scholar
  10. 10.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757CrossRefGoogle Scholar
  11. 11.
    Ratnasamy C, Wagner JP (2009) Catal Rev 51:325CrossRefGoogle Scholar
  12. 12.
    Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952CrossRefGoogle Scholar
  13. 13.
    Babita K, Sridhar S, Raghavan KV (2011) Int. J Hydrog Energ 36:6671CrossRefGoogle Scholar
  14. 14.
    Tao F, Ma Z (2013) Phys Chem Chem Phys 15:15260CrossRefGoogle Scholar
  15. 15.
    Si R, Flytzani-Stephanopoulos M (2008) Angew Chem Int Ed 47:2884CrossRefGoogle Scholar
  16. 16.
    Wieder NL, Cargnello M, Bakhmutsky K, Montini T, Fornasiero P, Gorte RJ (2011) J Phys Chem C 115:915CrossRefGoogle Scholar
  17. 17.
    Schweitzer NM, Schaidle JA, Ezekoye OK, Pan XQ, Linic S, Thompson LT (2011) J Am Chem Soc 133:2378CrossRefGoogle Scholar
  18. 18.
    Shekhar M, Wang J, Lee WS, Williams WD, Kim SM, Stach EA, Miller JT, Delgass WN, Ribeiro FH (2012) J Am Chem Soc 134:4700CrossRefGoogle Scholar
  19. 19.
    Williams WD, Shekhar M, Lee WS, Kispersky V, Delgass WN, Ribeiro FH, Kim SM, Stach EA, Miller JT, Allard LF (2010) J Am Chem Soc 132:14018CrossRefGoogle Scholar
  20. 20.
    Wang C, Sun LA, Cao QQ, Hu BQ, Huang ZW, Tang XF (2011) Appl Catal B 101:598CrossRefGoogle Scholar
  21. 21.
    Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang JG, Shen WJ (2006) Appl Catal B 62:265CrossRefGoogle Scholar
  22. 22.
    Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S (2004) J Catal 227:282CrossRefGoogle Scholar
  23. 23.
    Ramesh K, Chen LW, Chen FX, Liu Y, Wang Z, Han YF (2008) Catal Today 131:477CrossRefGoogle Scholar
  24. 24.
    Tang XF, Li JH, Sun LA, Hao JM (2010) Appl Catal B 99:156CrossRefGoogle Scholar
  25. 25.
    Shan JJ, Zhu Y, Zhang SR, Zhu T, Rouvimov S, Tao F (2013) J Phys Chem C 117:8329CrossRefGoogle Scholar
  26. 26.
    Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261CrossRefGoogle Scholar
  27. 27.
    Santos VP, Pereira MFR, Orfao JJM, Figueiredo JL (2010) Appl Catal B 99:353CrossRefGoogle Scholar
  28. 28.
    Wang X, Li YD (2002) J Am Chem Soc 124:2880CrossRefGoogle Scholar
  29. 29.
    Tao F (2012) Chemcatchem 4:583CrossRefGoogle Scholar
  30. 30.
    Tao F (2012) Chem Commun 48:3812CrossRefGoogle Scholar
  31. 31.
    Wang L, Zhang SR, Zhu Y, Patlolla A, Shan JJ, Yoshida H, Takeda S, Frenkel AI, Tao F (1011) ACS Catal 2013:3Google Scholar
  32. 32.
    Ye YC, Wang L, Zhang SR, Zhu Y, Shan JJ, Tao F (2013) Chem Commun 49:4385CrossRefGoogle Scholar
  33. 33.
    Zhang SR, Shan JJ, Zhu Y, Nguyen L, Huang WX, Yoshida H, Takeda S, Tao F (2013) Nano Lett 13:3310CrossRefGoogle Scholar
  34. 34.
    Zhu Y, Zhang SR, Shan JJ, Nguyen L, Zhan SH, Gu XL, Tao F (2013) ACS Catal 3:2627CrossRefGoogle Scholar
  35. 35.
    Nesbitt HW, Banerjee D (1998) Am Mineral 83:305Google Scholar
  36. 36.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  37. 37.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS (2011) Appl Surf Sci 257:2717CrossRefGoogle Scholar
  38. 38.
    Slusser GJ, Winograd N (1979) Surf Sci 84:211CrossRefGoogle Scholar
  39. 39.
    X.K. Huang, D.P. Lv, H.J. Yue, A. Attia, Y. Yang, Nanotechnology 19 (2008)Google Scholar
  40. 40.
    Sato Y, Terada K, Soma Y, Miyao T, Naito S (2006) Catal Commun 7:91CrossRefGoogle Scholar
  41. 41.
    Kalamaras CM, Panagiotopoulou P, Kondarides DI, Efstathiou AM (2009) J Catal 264:117CrossRefGoogle Scholar
  42. 42.
    Xu WQ, Si R, Senanayake SD, Llorca J, Idriss H, Stacchiola D, Hanson JC, Rodriguez JA (2012) J Catal 291:117CrossRefGoogle Scholar
  43. 43.
    Thinon O, Rachedi K, Diehl F, Avenier P, Schuurman Y (1940) Top Catal 2009:52Google Scholar
  44. 44.
    Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107CrossRefGoogle Scholar
  45. 45.
    Brun M, Berthet A, Bertolini JC (1999) J Electron Spectrosc 104:55CrossRefGoogle Scholar
  46. 46.
    Teschner D, Pestryakov A, Kleimenov E, Havecker M, Bluhm H, Sauer H, Knop-Gericke A, Schlogl R (2005) J Catal 230:186CrossRefGoogle Scholar
  47. 47.
    Watanabe R, Sekine Y, Takamatsu H, Sakamoto Y, Aramaki S, Matsukata M, Kikuchi E (2010) Top Catal 53:621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jun-jun Shan
    • 1
  • Luan Nguyen
    • 1
  • Shiran Zhang
    • 1
  • Franklin-Feng Tao
    • 1
  1. 1.Department of Chemical and Petroleum Engineering and Department of ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations