Catalysis Letters

, Volume 145, Issue 5, pp 1105–1112 | Cite as

Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol

  • Sasa Gu
  • Julian Kaiser
  • Galina Marzun
  • Andreas Ott
  • Yan Lu
  • Matthias Ballauff
  • Alessio Zaccone
  • Stephan Barcikowski
  • Philipp Wagener
Article

Abstract

The reduction of 4-nitrophenol by sodium borohydride is a common model reaction to test the catalytic activity of metal nanoparticles. As all reaction steps proceed solely on the surface of the metal nanoparticles (Langmuir–Hinshelwood model), ligand-coverage of metal nanoparticles impedes the merging of theory and experiment. Therefore we analyzed the catalytic activity of bare gold nanoparticles prepared by laser ablation in liquid without any stabilizers or ligands. The catalytic reaction is characterized by a full kinetic analysis including 4-hydroxylaminophenol as an intermediate species. Excellent agreement between theory and experiment is found. Moreover, the suspension of the nanoparticles remains stable. Hence, ligand-free nanoparticles can be used as a reference material for mechanistic studies of catalytic reactions. In addition, the analysis shows that gold nanoparticles synthesized by laser ablation are among the most active catalysts for this reaction.

Graphical Abstract

Keywords

Laser ablation in liquid Ligand-free gold nanoparticles Langmuir–Hinshelwood kinetics 

Supplementary material

10562_2015_1514_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1371 kb)

References

  1. 1.
    Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845CrossRefGoogle Scholar
  2. 2.
    Goesmann H, Feldmann C (2010) Angew Chem Int Ed 49:1362CrossRefGoogle Scholar
  3. 3.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025CrossRefGoogle Scholar
  4. 4.
    Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) J Am Chem Soc 127:9374CrossRefGoogle Scholar
  5. 5.
    Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Chem Soc Rev 41:5577CrossRefGoogle Scholar
  6. 6.
    Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908CrossRefGoogle Scholar
  7. 7.
    Kaiser J, Leppert L, Welz H, Polzer F, Wunder S, Wanderka N, Albrecht M, Lunkenbein T, Breu J, Kummel S, Lu Y, Ballauff M (2012) Phys Chem Chem Phys 14:6487CrossRefGoogle Scholar
  8. 8.
    Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814CrossRefGoogle Scholar
  9. 9.
    Fenger F, Fertitta E, Kirmse H, Thuenemann AF, Rademann K (2012) Phys Chem Chem Phys 14:9343CrossRefGoogle Scholar
  10. 10.
    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237CrossRefGoogle Scholar
  11. 11.
    Haber F (1898) Elektrochem. Angew Phys Chem 22:506Google Scholar
  12. 12.
    Blaser HU (2006) Science 313:313CrossRefGoogle Scholar
  13. 13.
    Corma A, Serna P (2006) Science 313:332CrossRefGoogle Scholar
  14. 14.
    Corma A, Concepcion P, Serna P (2008) Angew Chem 119:7404CrossRefGoogle Scholar
  15. 15.
    Layek K, Lakshmi Kantam M, Shirai M, Nishio-Hamane D, Sasaki T, Maheswarana H (2012) Green Chem 14:3164CrossRefGoogle Scholar
  16. 16.
    Marx S, Baiker A (2009) J Phys Chem C 113:6191CrossRefGoogle Scholar
  17. 17.
    Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) Surf Sci 12:134CrossRefGoogle Scholar
  18. 18.
    Nanda KK, Maisels A, Kruis FE (2008) J Phys Chem C 112:13488CrossRefGoogle Scholar
  19. 19.
    Via GH, Drake KF, Meitzner G, Lytle FW, Sinfelt JH (1990) Catal Lett 5:25CrossRefGoogle Scholar
  20. 20.
    Vanithakumari SC, Nanda KK (2008) Phys Lett A 372:6930CrossRefGoogle Scholar
  21. 21.
    King AG, Keswani ST (1994) J Am Ceram Soc 77:769CrossRefGoogle Scholar
  22. 22.
    Gu Z, Xiang X, Fan G, Li F (2008) J Phys Chem C 112:18459CrossRefGoogle Scholar
  23. 23.
    Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Adv Funct Mater 22:1333CrossRefGoogle Scholar
  24. 24.
    Yan Z, Chrisey DB (2012) J Photochem Photobiol C 13:204CrossRefGoogle Scholar
  25. 25.
    Amendola V, Meneghetti M (2013) Phys Chem Chem Phys 15:3027CrossRefGoogle Scholar
  26. 26.
    Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Angew Chem Int Ed 51:2229CrossRefGoogle Scholar
  27. 27.
    Wu S, Kaiser J, Guo X, Li L, Lu Y, Ballauff M (2012) Ind Eng Chem Res 51:5608CrossRefGoogle Scholar
  28. 28.
    Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618CrossRefGoogle Scholar
  29. 29.
    Liu Y, Jia CJ, Yamasaki J, Terasaki O, Schüth F (2010) Angew Chem Int Ed 49:5771CrossRefGoogle Scholar
  30. 30.
    Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Nat Chem 3:551CrossRefGoogle Scholar
  31. 31.
    Balasubramanian SK, Yang L, Yung LL, Ong CN, Ong WY, Yu LE (2010) Biomaterials 31:9023CrossRefGoogle Scholar
  32. 32.
    Beck A, Horvath A, Schay Z, Stefler G, Koppany Z, Sajo I, Geszti O, Guczi L (2007) Top Catal 44:115CrossRefGoogle Scholar
  33. 33.
    Menard LD, Xu F, Nuzzo RG, Yang JC (2006) J Catal 243:64CrossRefGoogle Scholar
  34. 34.
    Barcikowski S, Compagnini G (2013) Phys Chem Chem Phys 15:3022CrossRefGoogle Scholar
  35. 35.
    Zhang J, Chen G, Chaker M, Rosei F, Ma (2013) Appl Cat B 107:132–133Google Scholar
  36. 36.
    Menendez-Manjon A, Jakobi J, Schwabe K, Krauss JK, Barcikowski S (2009) J Laser Micro/Nanoeng 4:95CrossRefGoogle Scholar
  37. 37.
    Muto H, Yamada K, Miyajima K, Mafune F (2007) J Phys Chem C 111:17221CrossRefGoogle Scholar
  38. 38.
    Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) J Phys Chem B 108:16864CrossRefGoogle Scholar
  39. 39.
    Wagener P, Schwenke A, Barcikowski S (2012) Langmuir 28:6132CrossRefGoogle Scholar
  40. 40.
    Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J (2010) ACS Nano 4:7078CrossRefGoogle Scholar
  41. 41.
    Wang Y, Wie G, Zhang W, Jiang X, Zheng P, Shi L, Dong (2007) J Mol Catal A 266:233CrossRefGoogle Scholar
  42. 42.
    Zhang M, Liu L, Wu C, Fu G, Zhao H, He B (2007) Polymer 48:1989CrossRefGoogle Scholar
  43. 43.
    Han J, Li L, Guo R (2010) Macromolecules 43:10636CrossRefGoogle Scholar
  44. 44.
    Liu J, Qin G, Raveendran P, Ikushima Y (2006) Chem Eur J 12:2131CrossRefGoogle Scholar
  45. 45.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Liu S, Lu W, Wang L, Tian J, Sun X (2011) Catal Sci Technol 1:1142CrossRefGoogle Scholar
  47. 47.
    Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) J Hazard Mater 197:320CrossRefGoogle Scholar
  48. 48.
    Murugadoss A, Chattopadhyay A (2008) J Phys Chem C 112:11265CrossRefGoogle Scholar
  49. 49.
    Schrinner M, Polzer F, Mei Y, Lu Y, Haupt B, Ballauff M, Goldel A, Drechsler M, Preussner J, Glatzel U (2007) Macromol Chem Phys 208:1542CrossRefGoogle Scholar
  50. 50.
    Kuroda A, Ishidaa T, Haruta M (2009) J Mol Catal A 298:7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sasa Gu
    • 3
  • Julian Kaiser
    • 3
  • Galina Marzun
    • 1
    • 2
  • Andreas Ott
    • 3
  • Yan Lu
    • 3
  • Matthias Ballauff
    • 3
  • Alessio Zaccone
    • 4
  • Stephan Barcikowski
    • 1
    • 2
  • Philipp Wagener
    • 1
    • 2
  1. 1.Technical Chemistry I and Center for Nanointegration, Duisburg-Essen (CENIDE)University of Duisburg-EssenEssenGermany
  2. 2.NanoEnergieTechnikZentrum (NETZ)University of Duisburg-EssenDuisburgGermany
  3. 3.Soft Matter and Functional MaterialsHelmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  4. 4.Physik-Department and Institute of Advanced StudyTechnische Universität MünchenGarchingGermany

Personalised recommendations