Advertisement

Catalysis Letters

, Volume 145, Issue 3, pp 762–768 | Cite as

Dehydrogenation of 2-Phenyl-1-pyrroline with Palladium-Supported Catalysts: An Effective Route to the Synthesis of 2-Phenylpyrrole

  • Cláudia A. Figueira
  • Pedro T. Gomes
Article

Abstract

The catalytic dehydrogenation of 5-phenyl-3,4-dihydro-2H-pyrrole (2-phenyl-1-pyrroline) to 2-phenyl-1H-pyrrole in the presence of palladium-supported on activated carbon (Pd/C) or on alumina (Pd/Al2O3) is reported. Highly pure 2-phenylpyrrole is obtained in good yields and selectivities, in a ca. 20 gram-scale, after a simple work-up. The Pd/Al2O3 catalyst exhibited substantially higher activities than the Pd/C ones.

Graphical Abstract

Keywords

2-Phenylpyrrole 2-Phenyl-1-pyrroline Dehydrogenation Palladium-supported catalysts 

Notes

Acknowledgments

The authors thank the Fundação para a Ciência e Tecnologia for financial support (Projects PTDC/EQU–EQU/110313/2009, PEst-OE/QUI/UI0100/2013 and RECI/QEQ-QIN70189/2012) and for a fellowship to C.A.F. (SFRH/BD/47730/2008). We also thank Dr. R. C. Neto (IDMEC-IST) and to Mr. P. F. Mendes (CQE-IST) for their valuable help in the analysis of molecular hydrogen in the gas phase and of the reaction components by gas chromatography, respectively.

Supplementary material

10562_2014_1469_MOESM1_ESM.pdf (313 kb)
Supplementary material 1 (PDF 313 kb)

References

  1. 1.
    Estévez V, Villacampa M, Menendez JC (2010) Chem Soc Rev 39:4402CrossRefGoogle Scholar
  2. 2.
    Burghart A, Kim H, Welch MB, Thoresen LH, Reibenspies J, Burgess KJ (1999) Org Chem 64:7813CrossRefGoogle Scholar
  3. 3.
    Bonnet R, Motevalli M, Siu J (2004) Tetrahedron 60:8913CrossRefGoogle Scholar
  4. 4.
    Stemp G, Johnson CN (1997) U.S. Patent 5 637 609Google Scholar
  5. 5.
    Knight LW, Huffman JW, Isherwood ML (2003) Synlett 1993Google Scholar
  6. 6.
    Uhr H, Marhold A, Böhm S, Erdelen C, Wachendorff-Neumann U, Stendel W (1995) U.S. Patent 5 378 724Google Scholar
  7. 7.
    Hewton CE, Kimber MC, Taylor DK (2002) Tetrahedron Lett 43:3199CrossRefGoogle Scholar
  8. 8.
    Burns SA, Corriu RJP, Huynh V, Moreau JJE (1987) J Organomet Chem 333:281CrossRefGoogle Scholar
  9. 9.
    Boukou-Poba JP, Farnier M, Guilard R (1979) Tetrahedron Lett 20:1717CrossRefGoogle Scholar
  10. 10.
    Dhanak D, Reese CB, Romana S, Zappia G (1986) J Chem Soc Chem Commun 903Google Scholar
  11. 11.
    Ellames GJ, Hewkin CT, Jackson RFW, Smith DI, Standen SP (1989) Tetrahedron Lett 30:3471CrossRefGoogle Scholar
  12. 12.
    de Kimpe N, Tehrani KA, Stevens C, de Cooman P (1997) Tetrahedron 53:3693CrossRefGoogle Scholar
  13. 13.
    Xu Z, Lu X (1998) J Org Chem 63:5031CrossRefGoogle Scholar
  14. 14.
    Yada Y, Miyake Y, Nishibayashi Y (2008) Organometallics 27:3614CrossRefGoogle Scholar
  15. 15.
    Sukawa H, Seshimoto O, Tekuza T, Mukai T (1974) J Chem Soc Chem Commun 696Google Scholar
  16. 16.
    von der Saal W, Reinhardt R, Stawitz J, Quast H (1998) Eur J Org Chem 1645Google Scholar
  17. 17.
    Schmidt EY, Mikhaleva AI, Vasil’tsov AM, Zaitsev AB, Zorina NV (2005) Arkivoc vii:11Google Scholar
  18. 18.
    Mikhaleva AI, Petrova OV, Sobenina LN (2011) Chem Heterocycl Compd 47:1367CrossRefGoogle Scholar
  19. 19.
    Filippini L, Gusmeroli M, Riva R (1992) Tetrahedron Lett 33:1755CrossRefGoogle Scholar
  20. 20.
    Johnson CN, Stemp G, Anand N, Stephen SC, Gallagher T (1998) Synlett 1025Google Scholar
  21. 21.
    Rieth RD, Mankad NP, Calimano E, Sadighi JP (2004) Org Lett 6:3981CrossRefGoogle Scholar
  22. 22.
    Jafarpour F, Rahiminejadan S, Hazrati H (2010) J Org Chem 75:3109CrossRefGoogle Scholar
  23. 23.
    Bheeter CB, Bera JK, Doucet H (2012) Tetrahedron Lett 53:509CrossRefGoogle Scholar
  24. 24.
    Craig L, Bulbrook H, Hixon RM (1931) J Am Chem Soc 53:1831CrossRefGoogle Scholar
  25. 25.
    Adkins H, Lundsted LG (1949) J Am Chem Soc 71:2964CrossRefGoogle Scholar
  26. 26.
    Wawzonek S, Hansen GR (1966) J Org Chem 31:3580CrossRefGoogle Scholar
  27. 27.
    Carabineiro SA, Bellabarba RM, Gomes PT, Fonseca IM (2006) Catal Lett 111:221CrossRefGoogle Scholar
  28. 28.
    Haneda S, Okui A, Ueba C, Hayashi M (2007) Tetrahedron 63:2414CrossRefGoogle Scholar
  29. 29.
    Tanaka T, Okunaga K, Hayashi M (2010) Tetrahedron Lett 51:4633CrossRefGoogle Scholar
  30. 30.
    Laidler KJ (1976) Chemical Kinetics. Tata McGraw-Hill, New Delhi, p 267Google Scholar
  31. 31.
    http://www.sigmaaldrich.com/spectra/fnmr/FNMR001311.PDF. Last access: 27th Dec 2014 at Sigma-Aldrich website
  32. 32.
    Resasco DE (2003) In: Horvath IT (ed) Dehydrogenation – Heterogeneous, Encyclopedia of Catalysis, Vol. 3. Wiley, New York, p 49Google Scholar
  33. 33.
    Rahaman MV, Vannice MA (1991) J Catal 127:251CrossRefGoogle Scholar
  34. 34.
    Gomez R, del Angel G, Bertin V (1991) React Kinet Catal Lett 44:517CrossRefGoogle Scholar
  35. 35.
    del Angel G, Bertin V, Perez A, Gomez R (1992) React Kinet Catal Lett 48:259CrossRefGoogle Scholar
  36. 36.
    Arcoya A, Seoane XL, Gómez-Sainero LM (2003) Appl Surf Sci 211:341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centro de Química Estrutural, Departamento de Engenharia QuímicaInstituto Superior Técnico, Universidade de LisboaLisboaPortugal

Personalised recommendations