Catalysis Letters

, Volume 145, Issue 3, pp 757–761

Selective Oxidation of Ammonia by Co-adsorbed Oxygen on Iridium Surfaces: Formation of N2O

Article
  • 221 Downloads

Abstract

Temperature programmed desorption is used to investigate ammonia oxidation by pre-adsorbed oxygen on planar Ir(210) and faceted Ir(210) with different facet sizes. Evidence is found for formation of N2O from both surfaces, which is the first observation of N2O production in catalytic ammonia oxidation under UHV conditions (<1 × 10−9 Torr). The selectivity of the reaction to N2, N2O and NO can be tuned by oxygen pre-coverage, surface structure, and facet size. The reaction exhibits strong structure sensitivity on faceted Ir(210) versus planar Ir(210) and moderate size effects on faceted Ir(210) for average facet sizes of 5–14 nm.

Graphical Abstract

Keywords

Iridium Faceting Ammonia Oxygen Selectivity Surface morphology 

References

  1. 1.
    Il’chenko NI (1976) Russ Chem Rev 45:1119CrossRefGoogle Scholar
  2. 2.
    Gland JL, Korchak VN (1978) J Catal 53:9CrossRefGoogle Scholar
  3. 3.
    Asscher M, Guthrie WL, Lin TH, Somorjai GA (1984) J Phys Chem 88:3233CrossRefGoogle Scholar
  4. 4.
    Wagner ML, Schmidt LD (1995) J Phys Chem 99:805CrossRefGoogle Scholar
  5. 5.
    Broek ACMVD, Grondelle Jv, Santen RAV (1999) J Catal 185:297CrossRefGoogle Scholar
  6. 6.
    Kim M, Pratt SJ, King DA (2000) J Am Chem Soc 122:2409CrossRefGoogle Scholar
  7. 7.
    Scheibe A, Günther S, Imbihl R (2003) Catal Lett 86:33CrossRefGoogle Scholar
  8. 8.
    Pérez-Ramírez J, Kondratenko EV (2004) Chem Commun 4:376CrossRefGoogle Scholar
  9. 9.
    Weststrate CJ, Bakker JW, Rienks EDL, Martinez JR, Vinod CP, Lizzit S, Petaccia L, Baraldi A, Nieuwenhuys BE (2005) J Catal 235:92CrossRefGoogle Scholar
  10. 10.
    Wang Y, Jacobi K, Schöne W-D, Ertl G (2005) J Phys Chem B 109:7883CrossRefGoogle Scholar
  11. 11.
    Baerns M, Imbihl R, Kondratenko VA, Kraehnert R, Offermans WK, Santen RAV, Scheibe A (2005) J Catal 232:226CrossRefGoogle Scholar
  12. 12.
    Gong J, Ojifinni RA, Kim TS, White JM, Mullins CB (2006) J Am Chem Soc 128:9012CrossRefGoogle Scholar
  13. 13.
    Kraehnert R, Baerns M (2008) Chem Eng J 137:361CrossRefGoogle Scholar
  14. 14.
    Zhang L, He H (2009) J Catal 268:18CrossRefGoogle Scholar
  15. 15.
    Weststrate CJ, Bakker JW, Gluhoi AC, Ludwig W, Nieuwenhuys BE (2010) Catal Today 154:46CrossRefGoogle Scholar
  16. 16.
    Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl Catal B 111–112:445CrossRefGoogle Scholar
  17. 17.
    Rafti M, Lovis F, Imbihl R (2012) Catal Lett 142:16CrossRefGoogle Scholar
  18. 18.
    Lu X, Deng Z, Chau K-S, Li L, Wen Z, Guo W, Wu C-ML (2013) ChemCatChem 5:1832CrossRefGoogle Scholar
  19. 19.
    Wang C-C, Wu J-Y, Pham TLM, Jiang J-C (2014) ACS Catal 4:639CrossRefGoogle Scholar
  20. 20.
    Taylor GB (1927) Ind Eng Chem 19:1250CrossRefGoogle Scholar
  21. 21.
    Ostermaier JJ, Katzer JR, Manogue WH (1974) J Catal 33:457CrossRefGoogle Scholar
  22. 22.
    Sobczyk DP, Hensen EJM, Jong AMD, Santen RAV (2003) Top Catal 23:109CrossRefGoogle Scholar
  23. 23.
    Ermanoski I, Pelhos K, Chen W, Quinton JS, Madey TE (2004) Surf Sci 549:1CrossRefGoogle Scholar
  24. 24.
    Chen W, Ermanoski I, Madey TE (2005) J Am Chem Soc 127:5014CrossRefGoogle Scholar
  25. 25.
    Chen W, Ermanoski I, Wu Q, Madey TE, Hwu HH, Chen JG (2003) J Phys Chem B 107:5231CrossRefGoogle Scholar
  26. 26.
    Chen W, Ermanoski I, Jacob T, Madey TE (2006) Langmuir 22:3166CrossRefGoogle Scholar
  27. 27.
    Chen W, Wang H, Bartynski RA, “Nano-faceted metal surfaces: structure, reactivity and applications” (2015) In: Wu Z, Overbury SH (eds) Catalysis by Materials with Well-defined Structures, chap. 10. Elsevier B.V., the Netherlands (ISBN: 978-0-12-801217-8)Google Scholar
  28. 28.
    Bowker M (2007) ACS Nano 1:253CrossRefGoogle Scholar
  29. 29.
    Siera J, Cobden P, Tanaka K, Nieuwenhuys BE (1991) Catal Lett 10:335CrossRefGoogle Scholar
  30. 30.
    Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780CrossRefGoogle Scholar
  31. 31.
    Rebrov EV, Croon MHJMd, Schouten JC (2002) Chem Eng J 90:61CrossRefGoogle Scholar
  32. 32.
    Weststrate CJ, Bakker JW, Rienks EDL, Vinod CP, Lizzit S, Petaccia L, Baraldi A, Nieuwenhuys BE (2005) Phys Chem Chem Phys 7:2629CrossRefGoogle Scholar
  33. 33.
    Carabineiro SAC, Matveev AV, Gorodetskii VV, Nieuwenhuys BE (2004) Surf Sci 555:83CrossRefGoogle Scholar
  34. 34.
    Carabineiro SAC, Nieuwenhuys BE (2003) Surf Sci 532–535:87CrossRefGoogle Scholar
  35. 35.
    Weststrate CJ, Bakker JW, Rienks EDL, Vinod CP, Matveev AV, Gorodetskii VV, Nieuwenhuys BE (2006) J Catal 242:184CrossRefGoogle Scholar
  36. 36.
    Bradley JM, Hopkinson A, King DA (1995) J Phys Chem 99:17032CrossRefGoogle Scholar
  37. 37.
    Mieher WD, Ho W (1995) Surf Sci 322:151CrossRefGoogle Scholar
  38. 38.
    Guo H, Chrysostomou D, Flowers J, Zaera F (2003) J Phys Chem B 107:502CrossRefGoogle Scholar
  39. 39.
    Wang C-C, Siao SS, Jiang J-C (2011) Langmuir 27:14253CrossRefGoogle Scholar
  40. 40.
    Pérez-Ramírez J, López N, Kondratenko EV (2010) J Phys Chem C 114:16660CrossRefGoogle Scholar
  41. 41.
    Wang C-C, Yang Y-J, Jiang J-C, Tsai D-S, Hsieh H-M (2009) J Phys Chem C 113:17411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wenhua Chen
    • 1
  • Quantong Shen
    • 1
  • Robert A. Bartynski
    • 1
  1. 1.Department of Physics and Astronomy, and Laboratory for Surface ModificationRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations