Catalysis Letters

, Volume 145, Issue 2, pp 511–518 | Cite as

Hydrogenolysis of a γ-Acetylated Lignin Model Compound with a Ruthenium–Xantphos Catalyst

  • Adam Wu
  • Jean Michel Lauzon
  • Brian R. JamesEmail author


Catalytic hydrogenolysis of a γ-acetylated dimer lignin model compound is effected using a Ru–xantphos catalyst. Mechanistic investigations show mono-aryl degradation products are generated from the β-O-4 substrate as well as a terminal alkene ketone dimer (bis-aryl) that further dimerizes to a tetra-aryl product. Preliminary results using an acetylated kraft lignin as a substrate are also discussed.

Graphical Abstract


Acetylated lignin Hydrogenolysis Ruthenium Xantphos Lignin degradation 



We thank the NSERC Lignoworks Network for funding, Weyerhaeuser Co (Seattle, WA, USA) for supplying the acetylated lignin, and a reviewer for constructive comments.

Supplementary material

10562_2014_1401_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3,163 kb)


  1. 1.
    Thilakaratne R, Brown T, Li YH, Hu GP, Brown R (2014) Green Chem 16:627CrossRefGoogle Scholar
  2. 2.
    Saha B, Abu-Omar MM (2014) Green Chem 16:24CrossRefGoogle Scholar
  3. 3.
    Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Catal Sci Technol 4:333CrossRefGoogle Scholar
  4. 4.
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS (2013) J Am Chem Soc 135:6415CrossRefGoogle Scholar
  5. 5.
    Heracleous E, Lemonidou A (2013) Platinum Met Rev 57:101CrossRefGoogle Scholar
  6. 6.
    Hanson SK, Wu R, Silks LAP (2012) Angew Chem. Int Ed 51:3410CrossRefGoogle Scholar
  7. 7.
    Azadi P, Carrasquillo-Flores R, Pagan-Torres YJ, Gurbuz EI, Farnood R, Dumesic JA (2012) Green Chem 14:1573CrossRefGoogle Scholar
  8. 8.
    Collinson SR, Thielemans W (2010) Coord Chem Rev 254:1854CrossRefGoogle Scholar
  9. 9.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552CrossRefGoogle Scholar
  10. 10.
    Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Green Chem 14:3295CrossRefGoogle Scholar
  11. 11.
    Sergeev AG, Hartwig JF (2011) Science 332:439CrossRefGoogle Scholar
  12. 12.
    Wu A, Patrick BO, Chung E, James BR (2012) Dalton Trans 41:11093CrossRefGoogle Scholar
  13. 13.
    Nichols JM, Bishop LM, Bergman RG, Ellman JA (2010) J Am Chem Soc 132:12554CrossRefGoogle Scholar
  14. 14.
    Yang Q, Shi J, Lin L, Peng L, Zhuang J (2012) Bioresour Technol 123:49CrossRefGoogle Scholar
  15. 15.
    Shimizu S, Yokoyama T, Akiyama T, Matsumoto Y (2012) J Agric Food Chem 60:6471CrossRefGoogle Scholar
  16. 16.
    El-Zawawy WK, Ibrahim MM, Belgacem MN, Dufresne A (2011) Mater Chem Phys 131:348CrossRefGoogle Scholar
  17. 17.
    Kim YS, Chang H-M, Kadla JF (2008) Holzforschung 62:38Google Scholar
  18. 18.
    Del Río JC, Gutiérrez A, Martínez ÁT (2004) Rapid Commun Mass Spectrom 18:1181CrossRefGoogle Scholar
  19. 19.
    Ralph J (1996) J Nat Prod 59:341CrossRefGoogle Scholar
  20. 20.
    Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) J Agric Food Chem 55:5461CrossRefGoogle Scholar
  21. 21.
    Lu F, Ralph J (2002) Chem Commun 1:90–91Google Scholar
  22. 22.
    Lu F, Ralph J (1996) Holzforschung 50:360CrossRefGoogle Scholar
  23. 23.
    Zhang L, Gellerstedt G (2007) Magn Reson Chem 45:37CrossRefGoogle Scholar
  24. 24.
    Capanema EA, Balakshin MY, Kadla JF (2005) J Agric Food Chem 53:9639CrossRefGoogle Scholar
  25. 25.
    Qu C, Kishimoto T, Kishino M, Hamada M, Nakajima N (2011) J Agric Food Chem 59:5382CrossRefGoogle Scholar
  26. 26.
    Nimz HH, Lüdemann HD (1976) Holzforschung 30:33CrossRefGoogle Scholar
  27. 27.
    Sonoda T, Ona T, Yokoi H, Ishida Y, Ohtani H, Tsuge S (2001) Anal Chem 73:5429CrossRefGoogle Scholar
  28. 28.
    Obataya E, Shibutani S, Minato K (2007) J Wood Sci 53:408CrossRefGoogle Scholar
  29. 29.
    Mörck R, Kringstad Knut P (1985) Holzforschung 39:109.Google Scholar
  30. 30.
    Pu Y, Ragauskas AJ (2005) Can J Chem 83:2132CrossRefGoogle Scholar
  31. 31.
    Pizzi A, Zhou X, Navarrete P, Segovia C, Mansouri HR, Placentia Pena MI, Pichelin F (2013) J Adhes Sci Technol 27:252.Google Scholar
  32. 32.
    Hoeger IC, Filpponen I, Martin-Sampedro R, Johansson L-S, Österberg M, Laine J, Kelley S, Rojas OJ (2012) Biomacromolecules 13:3228CrossRefGoogle Scholar
  33. 33.
    Qian Y, Deng Y, Qiu X, Li H, Yang D (2014) Green Chem 16:2156CrossRefGoogle Scholar
  34. 34.
    Ghosh I, Jain RK, Glasser WG (1999) J Appl Polym Sci 74:448CrossRefGoogle Scholar
  35. 35.
    Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176CrossRefGoogle Scholar
  36. 36.
    Son S, Toste FD (2010) Angew Chem. Int Ed 49:3791CrossRefGoogle Scholar
  37. 37.
    Cho DW, Parthasarathi R, Pimentel AS, Maestas GD, Park HJ, Yoon UC, Dunaway-Mariano D, Gnanakaran S, Langan P, Mariano PS (2010) J Org Chem 75:6549CrossRefGoogle Scholar
  38. 38.
    Huo W, Li W, Zhang M, Fan W, Chang H-M, Jameel H (2014) Catal Lett 144:1159Google Scholar
  39. 39.
    Baird IR, Rettig SJ, James BR, Skov KA (1998) Can J Chem 76:1379CrossRefGoogle Scholar
  40. 40.
    James BR, Addison AW, Cairns M, Dolphin D, Farrell NP, Paulson DR, Walker S (1979) In: Tsutsui M (ed) Fundamental research in homogeneous catalysis, ch. 50. Springer, New YorkGoogle Scholar
  41. 41.
    Chow BC, Cohen IA (1971) Bioinorg Chem 1:57CrossRefGoogle Scholar
  42. 42.
    Enoki A, Goldsby G, Gold M (1981) Arch Microbiol 129:141CrossRefGoogle Scholar
  43. 43.
    Lauzon JMP, James BR Unpublished results. A summary of the findings is available in Table S3 in the ESIGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations