Catalysis Letters

, Volume 144, Issue 12, pp 2167–2175 | Cite as

Microscope Analysis of Au–Pd/TiO2 Glycerol Oxidation Catalysts Prepared by Deposition–Precipitation Method

  • Naoki MimuraEmail author
  • Norihito Hiyoshi
  • Masakazu Daté
  • Tadahiro Fujitani
  • Franck DumeignilEmail author


Gold–palladium bimetallic nanoparticle catalysts prepared by a deposition–precipitation method were effective for aerobic oxidation of glycerol to carboxylic acids. The role of palladium was to suppress C–C bond cleavage that is responsible for the formation of C2 by-product molecules. The nanoparticles were observed by microscope techniques, which further enabled characterizing the respective locations of Au and Pd within the particles.

Graphical Abstract


Nanoparticle catalyst Glycerol oxidation High-resolution EDS analysis 



A part of this work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 25340130 and by the International Research Group ‘ECSAW’ (Environmental Catalysis for Sustaining Clean Air and Water) between CNRS and AIST.


  1. 1.
    Hutchings GJ (1985) J Catal 96:292–295CrossRefGoogle Scholar
  2. 2.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) ChemLett 16(2):405–408Google Scholar
  3. 3.
    Web site of Haruta Gold Inc.
  4. 4.
    Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10(14):1921–1930CrossRefGoogle Scholar
  5. 5.
    Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) J Catal 281(1):40–49CrossRefGoogle Scholar
  6. 6.
    Ajaikumar S, Ahlkvist J, Larsson W, Shchukarev A, Leino AR, Kordas K, Mikkola JP (2011) Appl Catal A 392(1–2):11–18CrossRefGoogle Scholar
  7. 7.
    Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed 46(24):4434–4440CrossRefGoogle Scholar
  8. 8.
    Pagliaro M, Rossi M (2010) In: The future of glycerol 2nd edn, RSC Green Chemistry Book Series. University of York, YorkGoogle Scholar
  9. 9.
    Katryniok B, Kimura H, Skrzynska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem 13(8):1960–1979CrossRefGoogle Scholar
  10. 10.
    Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Appl Catal 96(2):217–228CrossRefGoogle Scholar
  11. 11.
    Kimura H (1993) Appl Catal 105(2):147–158CrossRefGoogle Scholar
  12. 12.
    Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Catal Today 102–103:203–212CrossRefGoogle Scholar
  13. 13.
    Dimitratos N, Porta F, Prati L (2005) Appl Catal A 291(1–2):210–214CrossRefGoogle Scholar
  14. 14.
    Dimitratos N, Lopez-Sanchez JA, Anthonykutty JM, Brett G, Carley AF, Tiruvalam RC, Herzing AA, Kiely CJ, Knight DW, Hutchings GJ (2009) Phys Chem Chem Phys 11(25):4952–4961CrossRefGoogle Scholar
  15. 15.
    Dimitratos N, Villa A, Prati L (2009) Catal Lett 133(3–4):334–340CrossRefGoogle Scholar
  16. 16.
    Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ (2011) Angew Chem Int Ed 50(43):10136–10139CrossRefGoogle Scholar
  17. 17.
    Kondrat SA, Miedziak PJ, Douthwaite M, Brett GL, Davies TE, Morgan DJ, Edwards JK, Knight DW, Kiely CJ, Taylor SH, Hutchings GJ (2014) Chem Sus Chem 7(5):1326–1334CrossRefGoogle Scholar
  18. 18.
    Ketchie WC, Murayama M, Davis RJ (2007) J Catal 250(2):264–273CrossRefGoogle Scholar
  19. 19.
    Mimura N, Hiyoshi N, Fujitani T, Dumeignil F (2014) RSC Adv 4(63):33416–33423CrossRefGoogle Scholar
  20. 20.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144(1):175–192CrossRefGoogle Scholar
  21. 21.
    Ketchie W, Murayama M, Davis R (2007) Top Catal 44(1–2):307–317CrossRefGoogle Scholar
  22. 22.
    Skrzyńska E, Ftouni J, Mamede A-S, Addad A, Trentesaux M, Girardon J-S, Capron M, Dumeignil F (2014) J Mol Catal A 382:71–78CrossRefGoogle Scholar
  23. 23.
    Skrzyńska E, Wondołowska-Grabowska A, Capron M, Dumeignil F (2014) Appl Catal A 482:245–257CrossRefGoogle Scholar
  24. 24.
    Skrzyńska E, Ftouni J, Girardon J-S, Capron M, Jalowiecki-Duhamel L, Paul J-F, Dumeignil F (2012) Chem Sus Chem 5(10):2065–2078CrossRefGoogle Scholar
  25. 25.
    Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Chem Eur J 16(25):7368–7371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Center for Compact Chemical SystemNational Institute of Advanced Industrial Science and Technology (AIST)SendaiJapan
  2. 2.Research and Innovation Promotion HeadquartersNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Research Institute for Innovation in Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Unité de Catalyse et Chimie du Solide, UCCS, UMR CNRS 8181Université Lille 1 Sciences et TechnologiesVilleneuve d’AscqFrance
  5. 5.Institut Universitaire de FranceMaison des UniversitésParisFrance

Personalised recommendations