Advertisement

Catalysis Letters

, Volume 144, Issue 12, pp 2176–2183 | Cite as

Bioproduction of (2R,3R)-3-Phenylglycidiol: A Key Chiral Synthon for Drugs Bearing 3-Phenylpropane Using a Newly-Isolated Strain of Aspergillus fumigatus ZJUTZQ160

  • Ling Zhang
  • Hong-Lei Shen
  • Chun Wei
  • Yun-Yun Chen
  • Qing ZhuEmail author
Article

Abstract

We report a novel and effective biosynthesis of (2R,3R)-3-phenylglycidiol using Aspergillus fumigatus ZJUTZQ160. After optimization of the biotransformation conditions, (2R,3R)-PG was obtained with good enantioselectivity (e.e. s  > 99.9 %, E > 58.6). Gram-scale preparation of (2R,3R)- 3-phenylglycidiol was successfully performed within 16 h (yield = 35.6 %, e.e.s > 99.9 %), indicating that A. fumigatus ZJUTZQ160 is a valuable biocatalyst for the efficient preparation of optically active epoxides. The conversion of (2R,3R)- 3-phenylglycidiol to optically pure (2S,3S)-3-azido-3-phenyl-propane-1,2-diol was also successfully achieved with excellent yield (92 %) and e.e. s (>94 %) after the nucleophilic substitution reaction with sodium azide.

Graphical Abstract

Keywords

Chiral epoxides Epoxide hydrolase Epoxy cinnamyl alcohol Aspergillus fumigates Enantioselectivity 

Notes

Acknowledgments

This work was supported by National Science Foundation of China (No. 21272212) and Zhejiang Natural Science Fund (No. LY12B02018).

References

  1. 1.
    Tang YF, Xu JH, Wu HY, Schulze B (2001) Isolation and characterization of an epoxide hydrolase producer for enantioselective hydrolysis of (R, S)-phenyl glycidylether. Microbiology 28:14–17Google Scholar
  2. 2.
    Niklasson IB, Delaine T, Islam MN, Karlsson R, Luthman K, Karlberg AT (2013) Cinnamyl alcohol oxidizes rapidly upon air exposure. Contact Dermatitis 68:129–138CrossRefGoogle Scholar
  3. 3.
    Alkofahi A, Ma WW, Mckenzie AT, Byrn SR, Mclaughlin JL (1989) Goniotriol from Goniathalamus giganteus. J Nat Prod 52:1371–1373CrossRefGoogle Scholar
  4. 4.
    Fang XP, Anderson JE, Chang CJ, Mclaughlin JL, Fanwick PE (1991) Two new styryl lactones, 9-deoxygoniopypyrone and 7-epi-goniofufurone, from Goniothalamus giganteus. J Nat Prod 54:1034–1043CrossRefGoogle Scholar
  5. 5.
    Shijo KC, Pradeep K (2007) Enantiselective synthesis of (+)-l-733,060. Tetrahedron Asymmetry 18:982–987CrossRefGoogle Scholar
  6. 6.
    Yadav JS, Premalatha K, Harshavardhan SJ, Subba BVR (2008) The first stereoselective and the total synthesis of Leiocarpin C and total synthesis of (+)-goniodiol. Tetrahedron Lett 49:6765–6767CrossRefGoogle Scholar
  7. 7.
    Yadav JS, Rajaiah G, Krishnam AR (2003) A concise and stereoselective synthesis of both enantiomers of altholactone and isoaltholactone. Tetrahedron Lett 44:5831–5833CrossRefGoogle Scholar
  8. 8.
    Kanegawa N, Kiyono Y, Kimura H, Sugita T, Kajiyama S, Kawashima H, Ueda M, Kuge Y, Saji H (2006) Synthesis and evaluation of radioiodinated (S, S)-2-(α -(2iodophenoxy)benzyl) morpholine for imaging brain norepinephrine transporter. Eur J Nucl Med Mol Imaging 33:639–647CrossRefGoogle Scholar
  9. 9.
    Philip H, George AO (2009) De novo asymmetric syntheses of (+)-goniothalamin, (+)-goniothalamin oxide, and 7,8-bis-epi goniothalamin using asymmetric allylations. Tetrahedron 65:5051–5055CrossRefGoogle Scholar
  10. 10.
    Yadav JS, Premalatha K, Harshavardhan SJ, Subba BVR (2008) The first stereoselective and the total synthesis of Leiocarpin C and total synthesis of (+)-goniodiol. Tetrahedron Lett 49:6765–6767CrossRefGoogle Scholar
  11. 11.
    Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299CrossRefGoogle Scholar
  12. 12.
    Hwang S, Choi CY, Lee EY (2010) Bio- and chemo-catalytic preparations of chiral epoxides. J Ind Eng Chem 16:1–6CrossRefGoogle Scholar
  13. 13.
    Sheng YM, Zhang ZF (2011) Enantioselective hydrolysis of glycidyl methylphenyl ethers by Botryosphaeria dothidea ZJUZQ007: effect of substitution pattern on enantioselectivity. Appl Biochem Biotechnol 164:125–132CrossRefGoogle Scholar
  14. 14.
    Chen L, Shen HL, Wei C, Zhu Q (2013) Bioresolution of (R)-glycidyl azide by Aspergillus niger ZJUTZQ208: a new and concise synthon for chiral vicinal amino alcohols. Appl Microbiol Biotechnol 97:2609–2616CrossRefGoogle Scholar
  15. 15.
    Chaithanya KIN, Santhosh RR, Suryavanshi G, Sudalai A (2011) A concise enantioselective synthesis of (+)-goniodiol and (+)-8-methoxygoniodiol via co-catalyzed HKR of anti-(2SR, 3RS)-3-methoxy-3-phenyl-1,2-epoxypropane. Tetrahedron Lett 52:438–440CrossRefGoogle Scholar
  16. 16.
    Choi WJ, Choi CY, De-Bont JA, Weijers CAGM (2000) Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor. Appl Microbiol Biotechnol 54:641–646CrossRefGoogle Scholar
  17. 17.
    Zhao J, Chu YY (2011) An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidy lethers. Adv Synth Catal 353:1510–1518CrossRefGoogle Scholar
  18. 18.
    Gomez G, Morisseau C, Hammock B, Christianson D (2006) Human soluble epoxide hydrolase: structural basis of inhibition by 4-(3-cyclohexylureido)-carboxylic acids. Protein Sci 15:58–64CrossRefGoogle Scholar
  19. 19.
    Manfred TR, Bocola M (2008) Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage. J Am Chem Soc 131:7334–7343Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ling Zhang
    • 1
  • Hong-Lei Shen
    • 1
  • Chun Wei
    • 1
  • Yun-Yun Chen
    • 1
  • Qing Zhu
    • 1
    Email author
  1. 1.Institute of BioengineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations