Catalysis Letters

, Volume 144, Issue 12, pp 1987–1995 | Cite as

Exploring Zeolite Chemistry with the Tools of Surface Science: Challenges, Opportunities, and Limitations

  • J. Anibal Boscoboinik
  • Shamil Shaikhutdinov


The complexity of catalysts that the surface science community has been able to address has increased substantially in a systematic manner, starting with metal and oxide single crystal surfaces and evolving to an atomistic description of clusters and nanoparticles on well-defined, planar supports. The next step in adding complexity is now to address surfaces of porous oxide materials, in particular of zeolites, which are the most extensively used catalysts in the industry. The recently reported successful fabrication of well-ordered thin films, consisting of planar arrangement of aluminosilicate polygonal prisms on a metal substrate counting with highly acidic bridging hydroxyl groups on the surface, represents the limiting case of infinitely large pore and cages in zeolites. This model system allows one to study reactions catalyzed by zeolites using the toolkit of surface science. In this Perspective, we describe the zeolitic model system, with its virtues and limitations, as well as the challenges, opportunities and expectations for the future in modelling porous catalysts by a surface science approach.

Graphical Abstract


Heterogeneous catalysis Zeolites Brönsted acid catalysis Thin films Oxide supports MTH 



We gratefully thank Prof. H.-J. Freund and all our coworkers cited in the references, in particular the theory group of Prof. J. Sauer, for their tremendous contribution to the work presented here. J.A.B thanks the A. von Humboldt Foundation and the Center for Functional Nanomaterials at BNL, under DOE contract No. DE-AC02-98CH10886.


  1. 1.
    Somorjai GA, Park JY (2009) Surf Sci 603(10–12):1293–1300CrossRefGoogle Scholar
  2. 2.
    Ertl G (1994) Surf Sci 299(1–3):742–754CrossRefGoogle Scholar
  3. 3.
    Somorjai GA, Li YM (2010) Top Catal 53(5–6):311–325CrossRefGoogle Scholar
  4. 4.
    Ertl G (2008) Angew Chem Int Ed 47(19):3524–3535CrossRefGoogle Scholar
  5. 5.
    Freund H-J, Shaikhutdinov S, Nilius N (2014) Top Catal 57(10–13):822–832CrossRefGoogle Scholar
  6. 6.
    Haw JF (2002) Phys Chem Chem Phys 4:5431–5441CrossRefGoogle Scholar
  7. 7.
    Martínez C, Corma A (2011) Coord Chem Rev 255(13–14):1558–1580CrossRefGoogle Scholar
  8. 8.
    Yilmaz B, Müller U (2009) Top Catal 52:888–895CrossRefGoogle Scholar
  9. 9.
    Corma A (1995) Chem Rev 95(3):559–614CrossRefGoogle Scholar
  10. 10.
    Baerlocher C, McCusker LB, (Accessed 07/01/2014)Google Scholar
  11. 11.
    Foster MD, Treacy MMJ A Database of Hypothetical Zeolite Structures:, (accessed 08/17/14)
  12. 12.
    Baerlocher C, McCusker LB, Olson DH (2007) Atlas of Zeolite Framework Types, 6th edn. Elsevier B. V, AmsterdamGoogle Scholar
  13. 13.
    Lupulescu AI, Rimer JD (2014) Science 344(6185):729–732CrossRefGoogle Scholar
  14. 14.
    Weisenhorn AL, Mac Dougall JE, Gould SAC, Cox SD, Wise WS, Massie J, Maivald P, Elings VB, Stucky GD, Hansma PK (1990) Science 247(4948):1330–1333CrossRefGoogle Scholar
  15. 15.
    Shaikhutdinov S, Freund HJ (2013) ChemPhysChem 14(1):71–77CrossRefGoogle Scholar
  16. 16.
    Stacchiola D, Kaya S, Weissenrieder J, Kuhlenbeck H, Shaikhutdinov S, Freund H-J, Sierka M, Todorova TK, Sauer J (2006) Angew Chem Int Ed 45:7636–7639CrossRefGoogle Scholar
  17. 17.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Angew Chem Int Ed 51:6005–6008CrossRefGoogle Scholar
  18. 18.
    Löffler D, Uhlrich JJ, Baron M, Yang B, Yu X, Lichtenstein L, Heinke L, Büchner C, Heyde M, Shaikhutdinov S, Freund H-J, Wlodarczyk R, Sierka M, Sauer J (2010) Phys Rev Lett 105:146104CrossRefGoogle Scholar
  19. 19.
    Boscoboinik JA, Yu X, Emmez E, Yang B, Shaikhutdinov S, Fischer FD, Sauer J, Freund H-J (2013) J Phys Chem C 117(26):13547–13556CrossRefGoogle Scholar
  20. 20.
    Boscoboinik JA, Yu X, Yang B, Fischer FD, Włodarczyk R, Sierka M, Shaikhutdinov S, Sauer J, Freund H-J (2012) Angew Chem 124(24):6107–6111CrossRefGoogle Scholar
  21. 21.
    Boscoboinik JA, Yu X, Yang B, Shaikhutdinov S, Freund H-J (2013) Microporous Mesoporous Mater 165:158–162CrossRefGoogle Scholar
  22. 22.
    Dempsey E (1974) J Catal 33(3):497–499CrossRefGoogle Scholar
  23. 23.
    Schroeder KP, Sauer J (1993) J Phys Chem 97(25):6579–6581CrossRefGoogle Scholar
  24. 24.
    Lowenstein W (1954) Am Mineral 39:92Google Scholar
  25. 25.
    Lichtenstein L, Büchner C, Yang B, Shaikhutdinov S, Heyde M, Sierka M, Włodarczyk R, Sauer J, Freund H-J (2012) Angew Chem 124(2):416–420CrossRefGoogle Scholar
  26. 26.
    Büchner C, Lichtenstein L, Yu X, Boscoboinik JA, Yang B, Kaden WE, Heyde M, Shaikhutdinov SK, Włodarczyk R, Sierka M, Sauer J, Freund H-J (2014) Chem Eur J 20(30):9176–9183CrossRefGoogle Scholar
  27. 27.
    Yoshiki B, Matsumoto K (1951) J Am Ceram Soc 34:283–286CrossRefGoogle Scholar
  28. 28.
    Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Chem Soc Rev 39:4951–5001CrossRefGoogle Scholar
  29. 29.
    Bordiga S, Regli L, Cocina D, Lamberti C, Bjørgen M, Lillerud KP (2005) J. Phys. Chem. B 109:2779–2784CrossRefGoogle Scholar
  30. 30.
    Yang B, Kaden WE, Yu X, Boscoboinik JA, Martynova Y, Lichtenstein L, Heyde M, Sterrer M, Wlodarczyk R, Sierka M, Sauer J, Shaikhutdinov S, Freund H-J (2012) Phys Chem Chem Phys 14(32):11344–11351CrossRefGoogle Scholar
  31. 31.
    Makarova MA, Ojo AF, Karim K, Hunger M, Dwyer J (1994) J Phys Chem 98:3619–3623CrossRefGoogle Scholar
  32. 32.
    Spoto G, Bordiga S, Ricchiardi G, Scarano D, Zecchina A, Borello E (1994) J Chem Soc, Faraday Trans 90:2827CrossRefGoogle Scholar
  33. 33.
    Lavalley J-C, Jolly-Feaugas S, Janin A, Saussey J (1997) Mikrochim. Acta Supp 14:51–56Google Scholar
  34. 34.
    Umansky B, Engelhardt J, Hall WK (1991) J Catal 127:128–140CrossRefGoogle Scholar
  35. 35.
    Hill IM, Al Hashimi S, Bhan A (2012) J Catal 285(1):115–123CrossRefGoogle Scholar
  36. 36.
    Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131(2):816–825CrossRefGoogle Scholar
  37. 37.
    Nishimura SY, Gibbons RF, Tro NJ (1998) J Phys Chem B 102(35):6831–6834CrossRefGoogle Scholar
  38. 38.
    Shimanouchi T (1972) Tables of Molecular Vibrational Frequencies Consolidated, vol I. National Bureau of Standards, Washington DC, pp 1–160Google Scholar
  39. 39.
    Roth WJ, Nachtigall P, Morris RE, Čejka J (2014) Chem Rev 114(9):4807–4837CrossRefGoogle Scholar
  40. 40.
    Tsapatsis M (2014) AIChE J 60(7):2374–2381CrossRefGoogle Scholar
  41. 41.
    Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M (2012) Science 336(6089):1684–1687CrossRefGoogle Scholar
  42. 42.
    Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catalysis Reviews 50(4):492–531CrossRefGoogle Scholar
  43. 43.
    Regina Oliveira de Souza T, Modesto de Oliveira Brito S, Martins Carvalho Andrade H (1999) Appl Catal A 178(1):7–15CrossRefGoogle Scholar
  44. 44.
    Boscoboinik JA, Yu X, Shaikhutdinov S, Freund H-J (2014) Microporous Mesoporous Mater 189:91–96CrossRefGoogle Scholar
  45. 45.
    Cheng K, Kang J, Huang S, You Z, Zhang Q, Ding J, Hua W, Lou Y, Deng W, Wang Y (2012) ACS Catal. 2(3):441–449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  1. 1.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  2. 2.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations