Catalysis Letters

, Volume 144, Issue 11, pp 1939–1945 | Cite as

Au@TiO2 Core–Shell Nanostructures with High Thermal Stability

  • Chen Chen
  • Mengxue Shi
  • Matteo Cargnello
  • Paolo Fornasiero
  • Christopher B. Murray
  • Raymond J. Gorte


A catalyst system consisting of core–shell nanostructures with Au core and porous TiO2 shell was synthesized and characterized for room temperature CO oxidation. The core–shell structures were prepared by colloidal methods starting from pre-formed 3 nm Au particles in solution and then adsorbed on to high-surface area, functionalized hydrophobic Al2O3 support. The obtained Au@TiO2/Si–Al2O3 catalyst showed higher activity and thermal stability when compared to a conventional Au/TiO2 sample prepared by impregnation of the same Au particles on to commercial titania P25. The core–shell catalyst was able to maintain its activity and 3 nm Au particles size upon calcination up to 600 °C, whereas the Au/TiO2 sample was found to sinter. Furthermore, it was found that the crystallization of TiO2 was suppressed in the core–shell structure, resulting in a thin layer of small TiO2 particles, which is favorable for the dispersion and thermal stability of Au nanoparticles.

Graphical Abstract


Nanoparticles Au CO oxidation TiO2 Core–shell catalysts Thermal stability 



C.C. and R.J.G. were supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant no. DE-FG02-13ER16380. P.F. acknowledges COST Action CM1104 “Reducible oxide chemistry, structure and functions” and University of Trieste through FRA 2013 project.


  1. 1.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175CrossRefGoogle Scholar
  2. 2.
    Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566CrossRefGoogle Scholar
  3. 3.
    Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Top Catal 29:95CrossRefGoogle Scholar
  4. 4.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87CrossRefGoogle Scholar
  5. 5.
    Boccuzzi F, Chiorino A (2000) J Phys Chem B 104:5414CrossRefGoogle Scholar
  6. 6.
    Haruta M (2002) Cattech 6:102CrossRefGoogle Scholar
  7. 7.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331CrossRefGoogle Scholar
  8. 8.
    Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal a-Gen 232:159CrossRefGoogle Scholar
  9. 9.
    Wu YY, Mashayekhi NA, Kung HH (2013) Catal Sci Technol 3:2881CrossRefGoogle Scholar
  10. 10.
    Vecchietti J, Collins S, Delgado JJ, Malecka M, del Rio E, Chen XW, Bernal S, Bonivardi A (2011) Top Catal 54:201CrossRefGoogle Scholar
  11. 11.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634CrossRefGoogle Scholar
  12. 12.
    Bollinger MA, Vannice MA (1996) Appl Catal B-Environ 8:417Google Scholar
  13. 13.
    Kozlov AI, Kozlova AP, Liu HC, Iwasawa Y (1999) Appl Catal a-Gen 182:9CrossRefGoogle Scholar
  14. 14.
    Green IX, Tang WJ, Neurock M, Yates JT (2001) Science 333:736CrossRefGoogle Scholar
  15. 15.
    Tost A, Widmann D, Behm RJ (2009) J Catal 266:299CrossRefGoogle Scholar
  16. 16.
    Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767CrossRefGoogle Scholar
  17. 17.
    Wang J, Kispersky VF, Delgass WN, Ribeiro FH (2012) J Catal 289:171CrossRefGoogle Scholar
  18. 18.
    Chen MS, Goodman DW (2006) Acc Chem Res 39:739CrossRefGoogle Scholar
  19. 19.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405CrossRefGoogle Scholar
  20. 20.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  21. 21.
    Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157CrossRefGoogle Scholar
  22. 22.
    Brown MA, Carrasco E, Sterrer M, Freund HJ (2010) J Am Chem Soc 132:4064CrossRefGoogle Scholar
  23. 23.
    Min BK, Wallace WT, Goodman DW (2004) J Phys Chem B 108:14609CrossRefGoogle Scholar
  24. 24.
    Zhang YW, Zhou YM, Zhang ZW, Xiang SM, Sheng XL, Zhou SJ, Wang F (2014) Dalton T 43:1360CrossRefGoogle Scholar
  25. 25.
    Ma Z, Brown S, Howe JY, Overbury SH, Dai S (2008) J Phys Chem C 112:9448CrossRefGoogle Scholar
  26. 26.
    Pietron JJ, Stroud RM, Rolison DR (2002) Nano Lett 2:545CrossRefGoogle Scholar
  27. 27.
    Guttel R, Paul M, Schuth F (2011) Catal Sci Technol 1:65CrossRefGoogle Scholar
  28. 28.
    Cargnello M, Wieder NL, Montini T, Gorte RJ, Fornasiero P (2010) J Am Chem Soc 132:1402CrossRefGoogle Scholar
  29. 29.
    Bakhmutsky K, Wieder NL, Cargnello M, Galloway B, Fornasiero P, Gorte RJ (2012) Chemsuschem 5:140CrossRefGoogle Scholar
  30. 30.
    Cargnello M, Jaen JJD, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P (2012) Science 337:713CrossRefGoogle Scholar
  31. 31.
    Zheng N, Fan J, Stucky GD (2006) J Am Chem Soc 128:6550CrossRefGoogle Scholar
  32. 32.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83CrossRefGoogle Scholar
  33. 33.
    Schumacher B, Plzak V, Kinne M, Behm RJ (2003) Catal Lett 89:109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chen Chen
    • 1
  • Mengxue Shi
    • 1
  • Matteo Cargnello
    • 2
  • Paolo Fornasiero
    • 3
  • Christopher B. Murray
    • 2
    • 4
  • Raymond J. Gorte
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Chemical and Pharmaceutical Sciences, ICCOMCNR, Consortium INSTMUniversity of TriesteTriesteItaly
  4. 4.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations