Catalysis Letters

, Volume 144, Issue 9, pp 1475–1486 | Cite as

Role of Water in CO Oxidation on Gold Catalysts

  • T. FujitaniEmail author
  • I. Nakamura
  • M. HarutaEmail author


Gold nanoparticles supported on base metal oxides exhibit high catalytic activity in the low temperature oxidation of CO. Numerous studies have been carried out by using powder, single crystal, and planar model catalysts together with density functional theory calculations to elucidate the reaction mechanism and the nature of the active sites. A characteristic feature of these catalysts is that the moisture contained in the catalyst and in the reactant gas markedly enhances CO2 formation rates. The promoting role of moisture, which is advantageous for the practical applications to air purifiers, can be classified into four categories: (i) maintain cationic state of gold (Au3+ or Au+), (ii) direct involvement of H2O and OH groups in CO oxidation, (iii) activation of O2 molecules, and (iv) transformation of catalytic intermediates and inhibitors (spectators) such as carbonate species. The elucidation of the role of water in CO oxidation will deepen the understanding of the unique catalysis by gold.

Graphical Abstract


Gold catalyst Nanoparticles CO oxidation Effect of water Metal oxide support 


  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405CrossRefGoogle Scholar
  2. 2.
    Bond GC, Thompson DT (2000) Gold Bull 33:41CrossRefGoogle Scholar
  3. 3.
    Haruta M, Yamada N, Kobayashi T, Ijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  4. 4.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  5. 5.
    Wolf A, Schüth F (2002) Appl Catal A 22:1CrossRefGoogle Scholar
  6. 6.
    Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144CrossRefGoogle Scholar
  7. 7.
    Widmann D, Behm RJ (2011) Angew Chem Int Ed 50:10241CrossRefGoogle Scholar
  8. 8.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Science 333:736CrossRefGoogle Scholar
  9. 9.
    Haruta M (2011) Faraday Discuss 152:11CrossRefGoogle Scholar
  10. 10.
    Green IX, Tang W, McEntee M, Yates JT Jr (2012) J Am Chem Soc 134:12717CrossRefGoogle Scholar
  11. 11.
    Pyykkö P (2008) Chem Soc Rev 37:1967CrossRefGoogle Scholar
  12. 12.
    Molina LM, Rasmussen MD, Hammer B (2004) J Chem Phys 120:7673CrossRefGoogle Scholar
  13. 13.
    Arenz M, Landman U, Heiz U (2006) ChemPhysChem 7:1871CrossRefGoogle Scholar
  14. 14.
    Haruta M, Takase T, Kobayashi T (1991) In: Yoshida S, Takezawa N, Ono T (eds) Catalytic science and technology, vol 1. Kodansha, Tokyo, p 331Google Scholar
  15. 15.
    Park ED, Lee JS (1999) J Catal 186:1CrossRefGoogle Scholar
  16. 16.
    Romero-Sarria F, Penkova A, Martinez LMT, Centeno MA, Hadjiivanov K, Odriozola JA (2008) Appl Catal B 84:119CrossRefGoogle Scholar
  17. 17.
    Karwacki CJ, Ganesh P, Kent PRC, Gordon WO, Peterson GW, Niu JJ, Gogotsi Y (2013) J Mater Chem A 1:6051CrossRefGoogle Scholar
  18. 18.
    Shou M, Takekawa H, Ju DY, Hagiwara T, Lu DL, Tanaka K (2006) Catal Lett 108:119CrossRefGoogle Scholar
  19. 19.
    Centeno MÁ, Portales C, Carrizosa I, Odriozola JA (2005) Catal Lett 102:289CrossRefGoogle Scholar
  20. 20.
    Ntho TA, Anderson JA, Scurrell MS (2009) J Catal 261:94CrossRefGoogle Scholar
  21. 21.
    Qi C, Zhu S, Su H, Lin H, Guan R (2013) Appl Catal B 138–139:104CrossRefGoogle Scholar
  22. 22.
    Kim TS, Gong J, Ojifinni RA, White JM, Mullins CB (2006) J Am Chem Soc 128:6282CrossRefGoogle Scholar
  23. 23.
    Gong J, Ojifinni RA, Kim TS, Stiehl JD, McClure SM, White JM, Mullins CB (2007) Top Catal 44:57CrossRefGoogle Scholar
  24. 24.
    Ojifinni RA, Froemming NS, Gong J, Pan M, Kim TS, White JM, Henkelman G, Mullins CB (2008) J Am Chem Soc 130:6801CrossRefGoogle Scholar
  25. 25.
    Gong J, Mullins CB (2009) Acc Chem Res 42:1063CrossRefGoogle Scholar
  26. 26.
    Yan T, Gong J, Flaherty DW, Mullins CB (2011) J Phys Chem C 115:2057CrossRefGoogle Scholar
  27. 27.
    Grisel RJH, Nieuwenhuys BE (2001) J Catal 199:48CrossRefGoogle Scholar
  28. 28.
    Oh HS, Costello CK, Cheung C, Kung HH, Kung MC (2001) Stud Surf Sci Catal 139:375CrossRefGoogle Scholar
  29. 29.
    Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal A 232:159CrossRefGoogle Scholar
  30. 30.
    Costello CK, Yang JH, Law HY, Wang Y, Lin JN, Marks LD, Kung MC, Kung HH (2003) Appl Catal A 243:15CrossRefGoogle Scholar
  31. 31.
    Kung HH, Kung MC, Costello CK (2003) J Catal 216:425CrossRefGoogle Scholar
  32. 32.
    Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767CrossRefGoogle Scholar
  33. 33.
    Boccuzzi F, Chiorino A (2000) J Phys Chem B 104:5414CrossRefGoogle Scholar
  34. 34.
    Boccuzzi F, Chiorino A, Manzoli M, Lu P, Akita T, Ichikawa S, Haruta M (2001) J Catal 202:256CrossRefGoogle Scholar
  35. 35.
    Lian H, Jia M, Pan W, Li Y, Zhang W, Jiang D (2005) Catal Commun 6:47CrossRefGoogle Scholar
  36. 36.
    Daté M, Haruta M (2001) J Catal 201:221CrossRefGoogle Scholar
  37. 37.
    Daté M, Ichihashi Y, Yamashita T, Chiorino A, Boccuzzi F, Haruta M (2002) Catal Today 72:89CrossRefGoogle Scholar
  38. 38.
    Dobrosz-Gómez I, Kocemba I, Rynkowski JM (2009) Catal Lett 128:297CrossRefGoogle Scholar
  39. 39.
    Calla JT, Davis RJ (2005) J Phys Chem B 109:2307CrossRefGoogle Scholar
  40. 40.
    Calla JT, Davis RJ (2006) J Catal 241:407CrossRefGoogle Scholar
  41. 41.
    Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Angew Chem Int Ed 43:1140CrossRefGoogle Scholar
  42. 42.
    Ojeda M, Zhan BZ, Iglesia E (2012) J Catal 285:92CrossRefGoogle Scholar
  43. 43.
    Calla JT, Davis RJ (2005) Catal Lett 99:21CrossRefGoogle Scholar
  44. 44.
    Calla JT, Davis RJ (2005) Ind Eng Chem Res 44:5403CrossRefGoogle Scholar
  45. 45.
    Bongiorno A, Landman U (2005) Phys Rev Lett 95:106102CrossRefGoogle Scholar
  46. 46.
    Liu LM, McAllister B, Ye HQ, Hu P (2006) J Am Chem Soc 128:4017CrossRefGoogle Scholar
  47. 47.
    Su HY, Yang MM, Bao XH, Li WX (2008) J Phys Chem C 112:17303CrossRefGoogle Scholar
  48. 48.
    Shang C, Liu ZP (2010) J Phys Chem C 114:16989CrossRefGoogle Scholar
  49. 49.
    Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129CrossRefGoogle Scholar
  50. 50.
    Gao F, Wood TE, Goodman DW (2010) Catal Lett 134:9CrossRefGoogle Scholar
  51. 51.
    Daniells ST, Makkee M, Moulijn JA (2005) Catal Lett 100:39CrossRefGoogle Scholar
  52. 52.
    Daniells ST, Overweg AR, Makkee M, Moulijn JA (2005) J Catal 230:52CrossRefGoogle Scholar
  53. 53.
    Zou XH, Qi SX, Suo ZH, An LD, Li F (2007) Catal Commun 8:784CrossRefGoogle Scholar
  54. 54.
    Daté M, Imai H, Tsubota S, Haruta M (2007) Catal Today 122:222CrossRefGoogle Scholar
  55. 55.
    Schubert MM, Venugopal A, Kahlich MJ, Plzak V, Behm RJ (2004) J Catal 222:32CrossRefGoogle Scholar
  56. 56.
    Diemant T, Bansmann J, Behm RJ (2010) Vacuum 84:193CrossRefGoogle Scholar
  57. 57.
    Haruta M, Ueda A, Tsubota S, Sanchez RMT (1996) Catal Today 29:443CrossRefGoogle Scholar
  58. 58.
    Cunningham DAH, Vogel W, Haruta M (1999) Catal Lett 63:43CrossRefGoogle Scholar
  59. 59.
    Bulushev DA, Kiwi-Minsker L, Yuranov I, Suvorova EI, Buffat PA, Renken A (2002) J Catal 210:149CrossRefGoogle Scholar
  60. 60.
    Debeila MA, Wells RPK, Anderson JA (2006) J Catal 239:162CrossRefGoogle Scholar
  61. 61.
    Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Catal Today 144:292CrossRefGoogle Scholar
  62. 62.
    Pyryaev PA, Moroz BL, Zyuzin DA, Nartova AV, Bukhtiyarov VI (2010) Kinet Catal 51:885CrossRefGoogle Scholar
  63. 63.
    Davran-Candan T, Tezcanlı ST, Yıldırım R (2011) Catal Commun 12:1149CrossRefGoogle Scholar
  64. 64.
    Nie X, Qian H, Ge Q, Xu H, Jin R (2012) ACS Nano 6:6014CrossRefGoogle Scholar
  65. 65.
    Delannoy L, Chantry RL, Casale S, Li ZY, Borensztein Y, Louis C (2013) Phys Chem Chem Phys 15:3473CrossRefGoogle Scholar
  66. 66.
    Kita H, Nakajima H, Hayashi K (1985) J Electroanal Chem 190:141CrossRefGoogle Scholar
  67. 67.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74CrossRefGoogle Scholar
  68. 68.
    Tanaka K (2010) Catal Today 154:105CrossRefGoogle Scholar
  69. 69.
    Tanaka K (2013) Hyoumen Kagaku 34:358 in JapaneseCrossRefGoogle Scholar
  70. 70.
    Oh SH, Hoflund GB (2007) J Catal 245:35CrossRefGoogle Scholar
  71. 71.
    Haruta M, Yoshizaki M, Cunningham DAH, Iwasaki T (1996) Ultraclean Technol 8:117 in JapaneseGoogle Scholar
  72. 72.
    Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M (2009) J Catal 267:121CrossRefGoogle Scholar
  73. 73.
    Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Institute for Innovation in Sustainable ChemistryNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Research Center for Gold Chemistry, Department of Applied Chemistry, Graduate School of Urban Environmental SciencesTokyo Metropolitan UniversityHachiojiJapan
  3. 3.Gold Catalysis Research Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R. China

Personalised recommendations